

Tutorial
A Getting Started Guide

Copyright © 2006-2014 by Consultingwerk Ltd. (“CW”) www. consultingwerk.de and other contributors

as below. All rigths reserved. Software and documentation is distributed on an “AS IS” status, without

warranty of any kind, either express or implied.

Contributors: (none at this point)

Authors: Eva Gessner, dietrainerin, Mike Fechner & Marko Rüterbories, Consultingwerk

©2011 Consultingwerk Ltd. – all right reserved 1

Contents
About this Tutorial .. 7

Prerequisites .. 7

Signs .. 7

Introduction .. 8

About the SmartComponent Library .. 8

Why it is so smart ... 8

Setting up the SmartComponent Library environment ... 9

Download the SmartComponent Library .. 9

Download database files .. 11

Create the sports2000 database ... 12

Create a Workspace and Project directory .. 13

Import the project into the OpenEdge Architect ... 14

Project Structure ... 16

OERA vs. OERA .. 17

Setting up Project Properties .. 18

Startup Parameter ... 18

Setting the PROPATH ... 20

Setting up connections to the customized sports2000 database 21

Connect to the sports2000 database in the OpenEdge Architect................................... 21

Compile the source code of the SmartComponent Library ... 27

Optional: Activate Auto-Refresh Option.. 29

Developing Business Entities ... 30

Introduction .. 30

Introducing the Business Entity Designer .. 31

Start the Business Entity Designer ... 33

Create a new Business Entity for Customer and Salesrep .. 35

Summary for CustomerBusinessEntity ... 37

©2011 Consultingwerk Ltd. – all right reserved 2

Optional: Change Temp-Table settings .. 38

Save the Business Entity .. 38

Create the required Temp-Table .. 39

Temp-Table Names .. 40

Define a Relation .. 41

Generate source code .. 43

Save the Business Entity Diagram File .. 44

(Re)open a Business Entity Diagram File ... 46

Business Entity Tester ... 47

Starting the Business Entity Tester tool from Business Entity Designer 47

Create a new Business Entity for Order-Customer-OrderLine-Item 51

Summary for OrderBusinessEntity ... 51

Building the sample application ... 54

Customer Overview and Customer Detail ... 54

1. Create a new Form Customer Overwiew ... 56

2. Add a SmartToolbarController ... 61

Set configurations for the SmartToolbarController ... 65

3. Add a SmartBusinessEntity Adapter .. 67

4. Add a SmartBusinessEntityBindingSource .. 71

5. Add a SmartDataBrowser .. 78

6. Define Links ... 82

Define a Data Link to display data in the SmartDataBrowser ... 85

Define a Navigation Link to navigate data using the buttons in the toolbar 86

Write the required initialization Code .. 87

7. Create a new Form for Customer Details .. 88

8. Insert a Tab Control to a Form ... 90

9. Create a SmartViewerControl CustomerDetailViewer ... 94

Duplicate the Binding Source ... 97

Add Fields to the User Control ... 98

©2011 Consultingwerk Ltd. – all right reserved 3

10. Insert a User Control in a Form ... 101

11. Specify Links for Form Customer Detail .. 104

Define a Table I/O Link ... 104

Define a Data Link to the CustomerAdapter in Form Customer Overview 106

12. Open the Form Customer Detail from Customer Overview 109

Add all necessary code for the double-click event ... 110

II. Order and Order Lines ... 112

1. Create new Tabs for the Tab Control .. 114

2. Add the OrderAdapter and OrderBindingSource components 115

3. Add a SmartDataBrowser for Order information .. 117

4. Customize code for Order Browser ... 119

5. Create a User Control OrderDetailViewer ... 120

Insert the User Control into the Form ... 122

6. Add Navigation Functionality ... 123

Navigating the Customer records ... 123

Navigating the Order records ... 124

7. Add the OrderLineAdapter and OrderLineBindingSource ... 127

8. Add a SmartDataBrowser for Order Line information .. 128

9. Create a User Control OrderLineDetailViewer ... 131

Insert the User Control to the Form .. 133

10. Add Navigation Functionality ... 134

Code for Order Lines .. 134

Add a Lookup for Salesrep .. 135

Create a new Business Entity for SalesRep data .. 136

Summary for SalesRepBusinessEntity ... 136

Add a SmartBusinessEntityLookup Control to a Form .. 138

Select the SalesRepBusinessEntity and the tables to be used by the Lookup 141

SmartBusinessEntityLookup Designer .. 142

Add some more functionality ... 148

©2011 Consultingwerk Ltd. – all right reserved 4

Disable the field RepName in the CustomerDetailViewer Control 149

Show the Images in the Lookup Browser ... 149

Code Review ... 152

Overview .. 152

Temp-Table: eCustomer.i .. 153

Temp-Table: eSalesrep.i ... 153

ProDataSet: dsCustomer.i ... 153

Business Entity: CustomerBusinessEntity.cls .. 155

Data Access Object: CustomerDataAccess.cls ... 157

Dataset Controller Object: CustomerSalesrepDatasetController.cls 160

Using a DatasetController with SmartBusinessEntityAdapter and

SmartDatasetChildAdapter components .. 160

Preprocessor in use ... 162

Business Entity Design Considerations Fehler! Textmarke nicht definiert.

Setting up the SmartComponent Library for real-world projects Fehler!

Textmarke nicht definiert.

Using Images for Browser Columns and Combo-Boxes 163

Einer Browserspalte (UltraGrid) zuweisen ... 163

Einer ComboBox zuweisen: ... 163

Appendix ... 164

Start the Demo Application .. 164

Review the Startup procedure of the Customer Explorer application Fehler! Textmarke
nicht definiert.

Create the sports2000 database ... 168

Create a void empty Database using the sports2000.st file ... 169

Loading data definitions ... 171

Loading table contents ... 173

Loading sequence definitions and values .. 175

OERA vs. OERA .. 176

©2011 Consultingwerk Ltd. – all right reserved 5

Changing Run Configurations .. 177

Starting the Business Entity Tester from within OpenEdge Architect Fehler! Textmarke
nicht definiert.

Customizing the Default Ribbon Configuration .. 181

Setting up the AppServer for the Progress GUI for .NET Client Fehler! Textmarke

nicht definiert.

Setting up AppServer / Web Service and ESB Fehler! Textmarke nicht definiert.

©2011 Consultingwerk Ltd. – all right reserved 6

About this Tutorial

Prerequisites

Make sure that you meet the following Software requirements:

 Windows Vista, Windows 7

 OpenEdge 10.2B SP 04

 SmartComponent Library Version 17433.

 Infragistic Ultra Controls Version 9.2.20092.

Before you start you should be familiar with:

 OpenEdge Architect

 Visual Designer

 Object Oriented Features of the Progress ABL

 GUI for .NET Programming

Signs

 This sign indicates special information.

 This sign indicates very important information you should know.

 Best practice recommended by Consultingwerk.

 Congratulation! You’ve completed a task.

©2011 Consultingwerk Ltd. – all right reserved 7

Introduction

About the SmartComponent Library

Why it is so smart

The SmartComponent Library is the framework for the OpenEdge GUI for .NET, the OpenEdge

UltraControls (Infragistics NetAdvantage for .NET) and the OpenEdge Reference Architecture that

increases the developers productivity while building data-centric applications. The SmartComponent

library contains various prebuilt components and Controls that can be used to build the graphical

client of an application. The SmartComponent Library is also equipped with an OpenEdge Reference

Architecture (OERA) compliant backend that uses ProDatasets to read and update data in relation to

a database (OpenEdge database or Progress data-server technology).

This tutorial will introduce a developer the basic design principles of applications using the

SmartComponent Library. The tutorial uses our sample / demo application – the CustomerExplorer –

to explain the steps required to build basic screens. For additional information developers should

consult the SmartComponent Library documentation on http://wiki.dynamics4.net

©2011 Consultingwerk Ltd. – all right reserved 8

http://wiki.dynamics4.net/

Setting up the SmartComponent Library
environment

Download the SmartComponent Library

Login to the Consultingwerk Developers Corner on http://wiki.dynamics4.net

As a licensed customer of the SmartComponent Library, you can request access by sending E-mail to

support@consultingwerk.de. Your assigned username will be in the form of FirstnameLastname and

you need to assign your own password on the wiki.

Enter your Name and Password and click Login.

Go to the Download section in the wiki at

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/Download and download the latest

©2011 Consultingwerk Ltd. – all right reserved 9

http://wiki.dynamics4.net/
mailto:support@consultingwerk.de
http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/Download

CustomerExplorer_Demo_yyyymmdd.zip file. The file name ends with the release date of the file in

the format yyyymmdd. Download the latest version.

When you click on the selected file in the download pane a new page opens which shows all files

contained in the zip-file. Click Button Download to start the download.

Save the file to a directory of your choice.

©2011 Consultingwerk Ltd. – all right reserved 10

The CustomerExplorer_Demo file contains a full version of the SmartComponent Library plus a

demo application based on a customized version of Progress’ sports2000 database. If you want to

learn more about the demo application go to chapter Start the Demo Application in the appendix of

this tutorial.

The CustomerExplorer-Demo file is just for educational purpose and unsuitable as a starting point for

real-world projects. For real-world environments you should use the

SmartComponentLibrary_yyymmdd.zip files instead. For more information on how to set up a real-

world environment refer to chapter Setting up the SmartComponent Library for real-world projects.

Download database files

Repeat the above steps to download the database files for the CustomerExplorer demo. The demo

application uses a customized version of the sports2000 database. Don’t try to use the standard

sports2000 database from the progress install directory. This database lacks some additional tables

and fields and thus results in compilation errors. Instead download the latest file

CustomerExplorer_DB_yyyymmdd_src.zip.

 In the following chapters you use the customized sports2000 database to build up your sample

application.

©2011 Consultingwerk Ltd. – all right reserved 11

Create the sports2000 database

Create a new sports2000 database based on the schema definition (.df file), the dumpfiles (.d) and

the structure description file (.st) you downloaded earlier in the tutorial. Don’t forget the binary files

(.blb). They contain the images for the CustomerExplorer demo application.

If you need any assistance by setting up the database you’ll find a detailed instruction in the chapter

Create the sports2000 database in the appendix of this tutorial.

©2011 Consultingwerk Ltd. – all right reserved 12

Create a Workspace and Project directory

 The sample application should be loaded into a separate project or workspace. Don't mix it

with your productive development environment. The sample application is a self-contained project.

The required version of the SmartComponent Library is included in the shipment.

In the Windows Explorer create a workspace and project directory.

 We have experienced that it is the safest to NOT use the space character as part of the

workspace path. For instance we have run into issues with connecting to databases using relative

path names when the workspace path does contain the space character.

Follow these naming conventions to make sure that the CustomerExplorer demo application will run.

 Workspace: WS_CustomerExplorer

 Project: ABL_Demo

 These naming conventions are just for tutorial purposes. In real-world projects you can choose

any names you want.

Unzip the file CustomerExplorer_Demo_yyyymmdd_src.zip to your workspace. The workspace

structure for workspace WS_CustomerExplorer should look like this.

©2011 Consultingwerk Ltd. – all right reserved 13

Import the project into the OpenEdge Architect

Open the OpenEdge Architect to import the project files.

In the Workspace Launcher select the appropriate workspace location.

The OpenEdge Architect opens.

The Resources View is empty so far.

 Select File > Import from the menu. The Import dialog opens.

 Select General > Existing Projects into Workspace.

 Click Next.

©2011 Consultingwerk Ltd. – all right reserved 14

 Browse to the directory that contains the project files and click Finish.

©2011 Consultingwerk Ltd. – all right reserved 15

Project Structure

The Resources View should look like this.

If you don’t see the folder Assemblies, Consultingwerk and OERA refresh the project (right click on

the project folder > Refresh).

By default the deployment of the SmartComponent Library contains the folders Assemblies,

Consultingwerk and OERA.

Folder Description
Assemblies Contains the assemblies.xml file with references to all required Consultingwerk,

Crainiate and Infragistics Assemblies (.dll files).

Consultingwerk Contains the SmartComponent Library with all of its components you will

discover during the tutorial. The central classes of the SmartComponent Library

are stored in the folder Consultingwerk/SmartComponents.

For further information refer to the following release note:

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseN

ote019

OERA Contains the procedural version of the Consultingwerk OERA implementation as

well as the service interface procedures (required for AppServer calls).

©2011 Consultingwerk Ltd. – all right reserved 16

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseNote019
http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseNote019

The SmartComponent Library is shipped with some .NET Assemblies (.dll files):

For further information refer to the following release notes:

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseNote018

Library .dll Description
Consultingwerk.Design.dll Design time Assemblies.

Provide functionality for the SmartComponent

Library.
Consultingwerk.SmartComponents.Design.dll

Consultingwerk.SmartComponents.dll

Consultingwerk.Support.dll

Crainiate.ERM4.dll Provide functionality for the BusinessEntity

Designer. Crainiate.ERM4.Layouts.dll

The Consultingwerk Assemblies are required because the .NET integration into the .NET lacks

some rarely used .NET framework features, especially required for the rich design time experience of

the SmartComponent Library. The source code of these assemblies is made available to our clients.

With the expection of the Consultingwerk.SmartComponents.Design.dll you will need to make those

Assemblies available to your end users as well.

The Crainiate assemblies are the foundation of the graphical Business Entity Designer that you’ll use

later in this tutorial. Crainiate is a 3rd party assembly vendor. Please be aware that Consultingwerk

provides these assemblies for executing the Business Entity Designer only. You are not licensed to

build and deploy you own applications based on the Crainiate assemblies unless you obtain the

required license from Crainiate!

OERA vs. OERA

If you take a closer look to the project directories you will recognize two OERA directories. \OERA

contains the procedural part of the OERA implementation, originally released by Progress Software.

Consultingwerk\OERA contains an OO OERA implementation developed by Consultingwerk Ltd. Both

versions can coexist and do not impede each other.

For more information refer to chapter OERA vs. OERA in the appendix.

©2011 Consultingwerk Ltd. – all right reserved 17

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseNote018

Setting up Project Properties
This section covers all project properties like startup parameters, PROPATH and database

configurations that are required to compile and edit the files of the sample application.

Startup Parameter

 Right click on the top-level node in the resources view representing the OpenEdge project you

have just imported.

 Open the Project Properties dialog from the context menu and expand OpenEdge in the tree

view on the left.

In the Startup parameters section specify the startup parameters below:

Parameter Value Description
-assemblies Assemblies Shows the AVM that the assemblies.xml file (also referencing the

required Infragistics Assemblies) and the SmartComponent Library

assemblies are located in the Assemblies directory.

-IOEverywhere 1 When upgrading to 10.2B04 (or 10.2B02 at least) we recommend to

use the new but not yet documented -IOEverywhere 1 startup

parameter. It removes the restrictions of using input-blocking

statements in functions or non-void methods and activates a fix for a

bug that is in the product since User Defined Functions have been

introduced in Progress version 8.3 or 9.0.

Input-blocking statements typically used in a GUI for .NET

application are the WAIT-FOR oForm:ShowDialog() or PROCESS

EVENTS.

For further information refer to the following release note:

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseN

otes/ReleaseNote020.

-D 500 Use Directory Size (-D) to change the number of compiled

procedure or class directory entries.

For further information refer to the OpenEdge documentation:

OpenEdge Deployment: Startup Command and Parameter

Reference.

©2011 Consultingwerk Ltd. – all right reserved 18

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseNote020
http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/ReleaseNotes/ReleaseNote020

 Please note: there is no delimiter but a blank between the parameters! And don’t copy/paste
hyphens from the tutorial!

©2011 Consultingwerk Ltd. – all right reserved 19

Setting the PROPATH

The PROPATH was set automatically during the import of the existing project. The

CustomerExplorer_Demo_yyyymmdd_src.zip file contains a .propath text file with all necessary

PROPATH entries.

 To review the PROPATH, open the Project > Properties, expand the OpenEdge tree-view and

select PROPATH.

©2011 Consultingwerk Ltd. – all right reserved 20

Setting up connections to the customized sports2000 database

In this tutorial, you build an application which is based on a customized version of the sports2000

database. Don’t use a copy of the standard sports2000 database that you may have created earlier.

Connect to the sports2000 database in the OpenEdge Architect

You now have to define a database connection for your own sample application as well as for the

CustomerExplorer demo.

Database connection profiles contain all the information necessary to connect to a database. The

information can include startup parameters, user name and password, host name, port number, and

more. The database connection profile may also contain parameters for a JDBC/SQL connection to

the database. OpenEdge Architect can use this database connection from plugins like the OpenEdge

Database Navigator (Java based alternative to the Data Dictionary) or the Tools for Business Logic

(T4BL), a graphical designer for ProDataSets with many functional limitations. For the purpose of this

tutorial (and most of your actual ABL based work) you will not need to define the SQL connection.

 In the OpenEdge Architect menu open Project > Properties > OpenEdge > Database
Connections and click the link Configure database connections in the upper right corner of the

dialog.

©2011 Consultingwerk Ltd. – all right reserved 21

The Preferences dialog opens.

 Select New to create a new database connection.

©2011 Consultingwerk Ltd. – all right reserved 22

The Add Connection Profile dialog opens:

 Type in the Connection name of the database: sports2000.

 Browse the sports2000.db file from your WRK directory where the copy of the customized

sports2000 database resides.

 For training purposes only specify 4711 as the port number of the database.

 Click button Next

©2011 Consultingwerk Ltd. – all right reserved 23

Optional: Specify whether to define a SQL connection.
A SQL connection is necessary to display the tables and columns in the DB Structure View. You can

create a new SQL connection or use an existing one.

 For tutorial purposes create a new one (default) and click Next.
 If you encounter any issues with the SQL connection on your system, don’t worry! This is just

optional.

The OpenEdge Architect copies the most important entries to the SQL Connection Profile.

 Validate the Connection name and Port, select the checkbox Open on Eclipse startup if you want

to connect to the SQL profile when starting OpenEdge Architect.

 Click Next.

©2011 Consultingwerk Ltd. – all right reserved 24

Define Database Server Configuration
 Select whether to automatically start (default) and stop (non-default) the database server upon

starting or leaving OpenEdge Architect.

 Click Finish.

 In order to connect to the sports2000 database select the checkbox on the left and click OK.

The OpenEdge runtime restarts.

©2011 Consultingwerk Ltd. – all right reserved 25

 Congratulation! You have successfully finished the database configuration setup.

 If the runtime does not start automatically you must restart the OpenEdge AVM manually.

 To do so go to the Project menu and select Restart OpenEdge AVM.

©2011 Consultingwerk Ltd. – all right reserved 26

Compile the source code of the SmartComponent Library

You may still have several error flags, indicating that the database is missing or inconsistencies

occurred between the various compiled classes. The red cross decorating a file or a folder indicates a

compilation issue. OpenEdge Architect will not attempt to recompile automatically after you have

provided modified startup parameters or additional database connections.

Before compilation After Compilation

To clear the error flags follow these steps:

 Clear OpenEdge Errors: Right-click to the project folder and select the OpenEdge > Clear

OpenEdge Compile Errors.
 Compile the SmartComponent Library: Right-click to the project folder and select OpenEdge >

Compile.

©2011 Consultingwerk Ltd. – all right reserved 27

OpenEdge Architect compiles the requested files.

 The recommended approach to compile the SmartComponent Library is to delete existing R-

code before compiling all files, because old R-code files can cause inconsistencies between compiled

classes which typically results in the requirement to compile multiple times before all compilation

issues are resolved.

©2011 Consultingwerk Ltd. – all right reserved 28

Optional: Activate Auto-Refresh Option

It is often necessary to refresh the project folder, e.g. when you add files to the project folder in the file

system. You need to refresh the project to make those files visible.

You can activate the auto refresh option in the Window > Preferences from the menu.

 Expand the tree-view General > Workspace and check the Refresh automatically option.

The next time you make changes to the project files the workspace will refresh automatically.

For more information about Architect Preferences refer to the article OpenEdge Architect Preferences

in the Consultingwerk Blog (www.blog.consultingwerk.de).

©2011 Consultingwerk Ltd. – all right reserved 29

http://blog.consultingwerk.de/consultingwerkblog/2011/08/openedge-architect-preferences/%23more-376

Developing Business Entities

Introduction

A Business Entity is a service object that provides access to data within an application. It defines a

data structure and contains logic to perform actions related to this data. Business Entities used by the

SmartComponent Library are built around a data structure that is defined using a ProDataset.

Business entities are more than simple data containers. They represent data from a business

perspective, providing a logical view of data that may or may not relate directly to one or more

database tables, xml files, text files or web services or provide abstraction from the physical form the

data have in a system. Business Entities are business-centric, not data-centric, that means a

Business Entity does not have any responsibility for accessing data sources or retrieving or updating

data from or in a database. This is typically the responsibility of the Data Access Object.

Each Business Entity is normally paired with a Data Access object which is used as a delegate that

manages and uses the actual data sources for reading and updating data in a database or a different

system. The Data Access Object and Business Entities in the context of the SmartComponent Library

are based on ProDataSets because of their capabilities to combine data from several data sources

(e.g. tables) in a logical view with relations.

Before starting to build a new .NET Form using the SmartComponent Library let’s take a closer look

at the data the user interface will be based on. In the tutorial you will build a Form which presents the

Customer and Salesrep data on the one hand and Order, Customer, OrderLine, Item data on the

other hand. In other words you need two Business Entities, one for the logical structure between

Customer and SalesRep and a second one for the view on Order, Customer, OrderLine and Item.

Consultingwerk provides a graphical Business Entity Designer tool that supports developers when

developing Business Entities, Data Access Objects and the related files for Temp-Table and

ProDataSets in every aspect.

BE_Customer

• Customer
• Salesrep

BE_Order

• Order
• Customer
• Orderline
• Item

©2011 Consultingwerk Ltd. – all right reserved 30

Introducing the Business Entity Designer

The Business Entity Designer allows you to build graphical models that represent Business Entities

as logical components. Using the graphical designer you create Business Entity components by

designing the ProDataset typically by adding all necessary elements such as Temp-Table ’s,

relations, indexes and fields using drag and drop. As you build your components, the Business
Entity Designer allows you to store all information about the structure and relationship in a Business

Entity Diagram file with the extension .bedgm.

After defining the logical structure of a Business Entity, you generate and compile the corresponding

ABL source code: Include files for each Temp-Table and ProDataSet definitions and the appropriate

class files for the Business Entity itself, the DataAccess object and the DatasetController object.

.bedgm
File

...Business
Entity.cls

...Data
Acess.cls

...Dataset
Controller.

cls
eTable.i

dsDataset.i

©2011 Consultingwerk Ltd. – all right reserved 31

 Before you start modeling your first Business Entity, create a new folder MyBusinessEntities in

your project, where you’ll store all entity files.

©2011 Consultingwerk Ltd. – all right reserved 32

Start the Business Entity Designer

To start the Business Entity Designer, run the procedure start.p from directory

Consultingwerk\BusinessEntityDesigner\UI.

You can customize the RUN configuration. For further information, please refer to chapter Changing

Run Configurations in the appendix of the tutorial.

The Business Entity Designer opens.

©2011 Consultingwerk Ltd. – all right reserved 33

At the bottom there is a viewer for all component properties you are going to create: Entity
Properties, Table Properties, Data-Relation, Field Properties and Index Properties. By default all

property views are read-only until you select an object on the design canvas and use the Update
record button in the Maintenance group of the ribbon.

©2011 Consultingwerk Ltd. – all right reserved 34

Create a new Business Entity for Customer and Salesrep

 To enable the Entity Properties view to enter name and other information for your Business

Entity, click the Update record button in the Maintenance group of the Ribbon.

 Type the name for the Business Entity: CustomerBusinessEntity and press the Tab Key or

leave the field.

To enforce component naming standards, Business Entity Designer automatically determines the

names for the ProDataSet and the class files following the naming conventions of Consultingwerk.

You can use your own naming conventions if you prefer.

After you’ve defined the names for the Business Entity and its main components, ProDataSet,

DatasetController object and DataAccess object, you need to specify the directory to store the files in.

 Press the dotted button on the right side of the BusinessEntityPackage field and select the

directory MyBusinessEntities you defined previously.

In the OpenEdge ABL the package of an object refers to the folder that contains this class. For our

Business Entities the package does so define the directory relative to the working directory that

typically contains the Business Entity class source and other related source code.

 Note that the package name will replace the slash from a folder name with a “.” (dot).

©2011 Consultingwerk Ltd. – all right reserved 35

 You can create a new directory for your project right here by clicking on the button Neuen
Ordner erstellen (create new folder).

©2011 Consultingwerk Ltd. – all right reserved 36

The Business Entity Designer automatically defaults the directory or package chosen for the

Business Entity for DatasetPath and DataAccessPackage. By default all components are saved into

the same directory. You can change the directory for every component if you prefer.

Summary for CustomerBusinessEntity

Field Description
BusinessEntityName CustomerBusinessEntity

BusinessEntityPurpose Business Entity for Customer

BusinessEntityPackage MyBusinessEntities

DatasetControllerName CustomerDatasetController

DatasetControllerPackage MyBusinessEntities

DatasetPath MyBusinessEntities

DatasetName dsCustomer

DataAccessName CustomerDataAccess

DataAccessPackage MyBusinessEntities

©2011 Consultingwerk Ltd. – all right reserved 37

Optional: Change Temp-Table settings

To change the default settings for Temp-Table go to the Temp-Table Defaults tab in the Entity

Properties viewer.

The DefaultTablePath is the same as for the ProDataSet and all other components of the Business

Entity. Optionally you can change these settings for each individual Temp-Table of the Business

Entity design.

Save the Business Entity

 To save the modifications to the Business Entity CustomerBusinessEntity definition click on the

Save changes button in the Maintenance section of the Ribbon.

The Entity Properties fields become read only.

©2011 Consultingwerk Ltd. – all right reserved 38

Create the required Temp-Table

 Select the Customer table from the Table Toolbox, hold down the left mouse button and drag it in

the Design Canvas of the Business Entity Designer.
 Release the mouse button.

 Repeat the steps to create a Salesrep table.

 Please note that the Temp-Table s have the same structure like the database tables, but the

name is prefixed with the default prefix of e (for entity).

The Design Area should look like this:

 While dragging the Salesrep table you will notice a different mouse pointer when dragging

over the eCustomer Temp-Table or over the white area of the design canvas. At this moment, you

should NOT drag the Salesrep table to the eCustomer table. Instead drag it to the white area of the

design canvas.

©2011 Consultingwerk Ltd. – all right reserved 39

If you accidentally drag the Salesrep table to the eCustomer table the following message appears:

 Select No and try again!

 If you’d have chosen Yes on the above dialog the Salesrep table wouldn’t have been added

as a separate table. The fields of the Salesrep table would have been added to the eCustomer
Temp-Table and the Salesrep table would have been added as a second source table to the

eCustomer Temp-Table . This may be desired in some situations, but not in this case. For more

considerations on this topic, please consult the chapter Business Entity Design Considerations.

Temp-Table Names

The Temp-Table names are predefined by the Business Entity Desginer. Every Temp-Table is

prefixed with e (member of an Entity) followed by the source table name. The default prefix of e can

be customized in the options dialog of the Business Entity Designer.

You can change the settings for an individual Temp-Table in the Table Properties viewer of the

Business Entity Designer.

©2011 Consultingwerk Ltd. – all right reserved 40

Define a Relation

 To define the relation between two tables, press the Relation button in the Design section of the

Ribbon.

 Click on the parent table (eCustomer) and hold down the left mouse button and drag the relation

to the child table (eSalesrep).

 Release the mouse button.

The Design Area should look like this:

The name of the new relation is set automatically by the Business Entity Designer and describes the

parent-child relationship of the tables: eCustomerSalesrepRelation. The first table name is the

parent table, the second one the child table. You can customize how the Business Entity Designer

builds the name of the relation in the Options dialog of the Business Entity Designer.

By default the Business Entity Designer searches for fields of the same name to build up a relation. In

this case the relation is built by field SalesRep from the customer and salesrep table.

 To check the relation and to change it, go to the Data-Relation section of the Designer. It is

read-only. If you want to change field names or relation fields press button Update record in the

©2011 Consultingwerk Ltd. – all right reserved 41

Ribbon. As already explained for entity or table properties you can change all predefined setting for

the relation here.

If you want to change the relation fields, you can type the parent.child pair in the fill-in RelationFields

in the Data-Relation viewer. Alternatively you can use the Data-Relation Editor.

 To open it, click the dotted button at the right end of the RelationFields fill-in.

 To define a field pair mark a field in both tables by holding the Ctrl-key and select Join.

 Or drag and drop the field from left to right or vice versa.

The new field pair appears in the lower section of the dialog.

 To remove a field pair right-mouse-click the field pair and select Remove.

©2011 Consultingwerk Ltd. – all right reserved 42

Generate source code

 To generate and compile all required source code click the button Generate in the Source Code

section of the Ribbon.

A message appears as a confirmation that the Business Entity has been successfully generated..

When you click the arrow button in the left lower corner you can verify what files have been generated

for you.

To verify that your Business Entity is performing correctly and data is filled into the ProDataSet of the

Business Entity you should use the Business Entity Tester utility we are discussing later in the

tutorial.

To see the generated files in your folder just refresh the project in OpenEdge Architect.

The Resources view should look like this:

©2011 Consultingwerk Ltd. – all right reserved 43

 To refresh a project, press F5 or right-click on the folder and select Refresh from the pop-up

menu. You can also activate the auto-refresh option. For more information refer to chapter Activate

Auto-Refresh Option.

Save the Business Entity Diagram File

When you close the Business Entity Designer or choose Save from the application menu, you are

asked to save the changes. By default, a file named CustomerBusinessEntity.bedgm file is created in

the MyBusinessEntities directory (at the same location as the Business Entity source code would be

generated). If you prefer, you can save the file to a directory of your choice.

©2011 Consultingwerk Ltd. – all right reserved 44

The CustomerBusinessEntity.bedgm file is an xml file where all properties and configuration you

designed are saved. Actually the .bedgm file is a serialized version of the ProDataset used by the

Business Entity Designer and code generator to handle the settings at runtime. This simplifies any

kind of automation around in the context of the Business Entity Designer.

©2011 Consultingwerk Ltd. – all right reserved 45

(Re)open a Business Entity Diagram File

To (re)open a Business Entity Diagram open the Business Entity Designer, select the application

menu (orb) in the upper left corner and choose a .bedgm file from the last recently used list or click

Open to select a file from the file system.

 You can also drag-and-drop .bedgm files from the Ressources View of the OpenEdge

Architect or the Windows Explorer to the Design Area of the Business Entity Designer to open the

design.

©2011 Consultingwerk Ltd. – all right reserved 46

Business Entity Tester

When implementing a new Business Entity you should verify that your Business Entity is performing

correctly and data is populated in the ProDataSet of the Business Entity. The Business Entity Tester
is a tool that can perform such tests and validate the whole process of retrieving data from the

backend to the frontend, without having to build a custom user interface first for this purpose. The

Business Entity Tester allows manual unit tests.

The Business Entity Tester uses the same components for reading data from the Business Entity as

the user interfaces does, which we are going to build later in this tutorial (namely the

SmartBusinessEntityAdapter and the ServiceAdapter).

Starting the Business Entity Tester tool from Business Entity Designer

 To test your Business Entity, click the button Business Entity Tester in the Test group of the

Ribbon.

The Business Entity Tester tool opens.

If you want to test a Business Entity you have to provide the fully qualified class name of the Business

Entity in the ComboBox (top left). When you start the Business Entity Tester from the Business
Entity Designer the current Business Entity name is already filled.

 Alternatively you can start the BusinessEntity Tester from the OpenEdge Architect. To learn

more about this option refer to chapter Starting the Business Entity Tester from OpenEdge Architect

in the appendix of this tutorial.

©2011 Consultingwerk Ltd. – all right reserved 47

 Select button Get Schema and the schema of the Business Entity will be shown in the tree-view

on the left.

 Now you can select some tables to be requested from the backend by checking them in the

schema tree.

 Choose button Get Data, which will request the data from the backend.

It is also possible to filter the results passed back to the client on the backend.

©2011 Consultingwerk Ltd. – all right reserved 48

 To do so you have to choose button Filter for every table selected to be retrieved from the

backend and provide a customized query.

 The Business Entity query strings are expressed against the Temp-Table definitions. The

DataAccess object contains logic to translate this query string into the actual database query string.

Business Entities may abstract the database schema from the client (the ProDataSet schema). Field

names may be changed to provide meaningful names and tables may be normalized or

denormalized. In these cases the client should not know anything about the database schema and

thus specifying the query strings against the Temp-Table s provides better decoupling between the

user interface (consumer) and the backend (provider). However the query string will be translated into

a database query string by the DataAccess object so that this object is the only object that needs to

know about the actual mapping between the Temp-Table s and the database tables.

 Press button Get Data again. The result should now look like this:

As you can see, only customers from the “USA” are available in the Grid.

©2011 Consultingwerk Ltd. – all right reserved 49

The applied filter can be removed:

 by using the context menu entry Remove Filter on the noted in the tree

 specifying an empty filter using the filter dialog

 by deselecting the table.

Test your Business Entity CustomerBusinessEntity and close the Business Entity Tester.

©2011 Consultingwerk Ltd. – all right reserved 50

Create a new Business Entity for Order-Customer-OrderLine-Item

In order to show dependent data in the sample application for order header and order details for

customer records you need a second Business Entity. Create a new Business Entity

OrderBusinessEntity for Order, Customer, OrderLine and Item following the naming conventions

below.

Summary for OrderBusinessEntity

Field Description
BusinessEntityName OrderBusinessEntity

BusinessEntityPurpose Business Entity for Order

BusinessEntityPackage MyBusinessEntities

DatasetControllerName OrderDatasetController

DatasetControllerPackage MyBusinessEntities

DatasetPath MyBusinessEntities

DatasetName dsOrder

DataAccessName OrderDataAccess

DataAccessPackage MyBusinessEntities

Create the following Temp-Table s and the appropriate Relations.

Table Relation Relation-Parent Relation-Child
Order eOrder/ecustomer eOrder.custnum eCustomer.custnum

Customer

OrderLine eOrder/eOrderLine eOrder.linenum eOrderLine.linenum

Item eOrderLine/eItem eOrderLine.itemnum eItem.itemnum

©2011 Consultingwerk Ltd. – all right reserved 51

You should always verify the relations the Business Entity Designer creates for you!

 Change the eOrdereCustomerRelation fields to Custnum,Custnum.

The design canvas of the Business Entity Designer should look like this.

 Generate and Compile the new Business Entity and Refresh your project folder in OpenEdge

Architect.

©2011 Consultingwerk Ltd. – all right reserved 52

The files have been created!

The Resources view should look like this:

 Test your Business Entity using the Business Entity Tester.

©2011 Consultingwerk Ltd. – all right reserved 53

Building the sample application

Customer Overview and Customer Detail

After you have done all preliminary work by designing the backend so far, you are ready to build the

user interface now where most of the functionality of the OERA implementation will be used, e.g.

ProDataSets, BindingSources, DataSetAdapater.

At the end of this chapter your application contains two forms. The first one, Customer Overview

shows all customer records in a browser Control. From a ribbon you can navigate but not update. The

second Form, Customer Detail shows detail information about the selected customer record in a

viewer Control. This Form will have update functionality.

©2011 Consultingwerk Ltd. – all right reserved 54

Follow this roadmap to build the sample application step by step:

Step To Do Function
1 Create a new Form CustomerForm Container object

2 Add a SmartToolbarController Toolbar for navigation purposes

3 Add a SmartBusinessEntityAdapater DataSource object

4 Add a SmartBusinessEntityBindingSource Binds the DataSource object to the

visualization object.

5 Add a SmartDataBrowser Visualization of records in a browse

Control

6 Specify Links Communication between Controls to

display or update data

7 Create a new Form Customer Detail New container object for dependent data

like customer detail, order and orderlines

8 Insert a Tab Control in a Form Create a new Form Customer Detail and

insert a Tab Control

9 Create an User Control CustomerDetailViewer Visualization of detail information in a

viewer

10 Insert an User Control on a tab page Insert the User Control

CustomerDetailViewer to the first tab page

11 Specify Links for Form Customer Detail Communication between to forms

12 Open Form Customer Detail from Customer

Overview

Define a double-click event for Form

Customer Overview that opens the

Customer Detail Form

This next step is optional but helps you organize your files. Separating the user interface will help you

in the future when deploying you application distributed on on AppServer and a client (optional).

 Create a new folder MyGUI to store all GUI related files.

 Open the Visual Designer Perspective by selecting Window > Open Perspective > OpenEdge
Visual Designer from the menu.

©2011 Consultingwerk Ltd. – all right reserved 55

1. Create a new Form Customer Overwiew

 Create a new ABL Form CustomerForm.cls from the menu File > New > ABL Form.

The New ABL Form dialog opens.

©2011 Consultingwerk Ltd. – all right reserved 56

By default the new Form inherits from Progress.Windows.Form. You should change this to a different

foundation class provided as part of the SmartComponent Library.

 Click the Browse button to change the Inherits class to

Consultingwerk.SmartComponents.Base.SmartWindowFom.

The Super Class Selection dialog opens.

 To preselect all smart classes, type in smart in the filter text fill-in.

 Select class SmartWindowForm – Consultingwerk.Smart.Components.Base.SmartWindowForm

and click OK.

The result should look like this.

©2011 Consultingwerk Ltd. – all right reserved 57

 The SmartWindowForm used as a base Form provides standard functionality like optionally

storing and restoring the Window position and size in the registry (or a different storage) or prompting

the user to save changes when the window is getting closed with pending changes.

We highly recommend the ROUTINE-LEVEL error handling for the SmartComponent Library (and all

new OO code).

 To do so check Add routine-level error handling.

 Click Finish to close the New ABL Form dialog.

The new Form has been created and you’ll be presented the Visual Designer design surface hosting

the empty Form object.

©2011 Consultingwerk Ltd. – all right reserved 58

©2011 Consultingwerk Ltd. – all right reserved 59

In the next step you’re going to change the title of the Form.

 To change the title use the Properties view and change the Text property from CustomerForm to

Customer Overview or anything meaningful to the end user.

 You can set properties by typing the new property value next to the name of the property in the

property grid. In some cases you can use Designer Verbs (hyperlinks) to modify one or more

properties. The SmartComponent Library provides for you a couple of these Designer Verbs which

we’ll introduce on the following pages. Other useful Designer Verbs are provided by Microsoft or 3rd

party vendors like Infragistics.

©2011 Consultingwerk Ltd. – all right reserved 60

2. Add a SmartToolbarController

All Controls you need for the UI are available in the Toolbox and are managed in groups. The Control

group you are going to use primarily is the SmartComponent4.NET group.

To add a Control to the Form, double-click the Control in the Toolbox. Some Controls have visual

presence on the Form like buttons or fill-ins. There are also Controls that don’t have any visualization

and appear only in the non-visual Control tray in the lower section of the designer. For precise

distinction we will reference those objects as Components and will use the term Controls only for

visual elements. For more information on the distinction between Controls and Components, please

reference the Microsoft Developer Network (MSDN) for more information.

The SmartToolbarController offers standard tools for navigation and update functionality. It is based

upon the UltraToolbarsManager from Infragistics and you can choose between a classical look and

feel with toolbar and menu and the new Ribbon style known from Office 2007/2010 or Windows 7

applications like Paint or Notepad .

 To add a SmartToolbarController to the Form double-click the item in the Toolbar.

When an UltraToolbarsManager component is added to a Form, the class design time functionality

(component designer) will check whether the Docking Areas for the toolbar and the FillPanel for the

actual contents of the Form already exists or not. If they do not exist the Controls will be created for

you and the toolbar can be docked on different borders of the Form. So the following message is

©2011 Consultingwerk Ltd. – all right reserved 61

expected to appear almost whenever you add an UltraToolbarsManager or SmartToolbarController to

a Form. You will only choose No to the below message when adding the Toolbar Component to the

MDI Container of your application.

 Select Yes to continue.

 It is recommended to add the SmartToolbarController always as the first Control to a new

Form. It is based on Infragistics UltraToolbarsManager component and the UltraToolbarsManager

design time functionality will always add a number of default Controls to a Form to support the

anchoring of toolbars and proper resizing (e.g. when the Ribbon get’s minimized or maximized). One

of the additional Controls is a FillPanel that should be used as the parent for every (visual) Control on

the Form.

For more information, please refer to the UltraToolbarsManager documentation from Infragistics.

©2011 Consultingwerk Ltd. – all right reserved 62

The new toolbar Component smartToolbarController1 has been added to your Form and will appear

in the non-visual Component tray in the lower section of the designer (typically with the yellow

background).

 For more readability you may change the name of the Control from smartToolbarControler1 to

CustomerToolbar using the Name property.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 63

 When a Control is added to a Form it creates code for the object instance of the Control or

Component class and provides a unique name in the Form which is also used as the name of the

reference variable that can be used to manipulate the Control or Component in the program code at

runtime.

 To open the code in the ABL Editor, select Open With > OpenEdge ABL Editor from the context

menu of the CustomerForm.cls file in the resouces view

 or press F9 or “View Source” or the Visual Designers context menu.

CLASS MyGUI.CustomerForm INHERITS SmartWindowForm:

 DEFINE PRIVATE VARIABLE m_CustomerForm_Toolbars_Dock_Area_Top AS
Infragistics.Win.UltraWinToolbars.UltraToolbarsDockArea NO-UNDO.
 DEFINE PRIVATE VARIABLE m_CustomerForm_Toolbars_Dock_Area_Right AS
Infragistics.Win.UltraWinToolbars.UltraToolbarsDockArea NO-UNDO.
 DEFINE PRIVATE VARIABLE m_CustomerForm_Toolbars_Dock_Area_Left AS
Infragistics.Win.UltraWinToolbars.UltraToolbarsDockArea NO-UNDO.
 DEFINE PRIVATE VARIABLE m_CustomerForm_Toolbars_Dock_Area_Bottom AS
Infragistics.Win.UltraWinToolbars.UltraToolbarsDockArea NO-UNDO.
 DEFINE PRIVATE VARIABLE components AS
System.ComponentModel.IContainer NO-UNDO.
 DEFINE PRIVATE VARIABLE CustomerToolbar AS
Consultingwerk.SmartComponents.Implementation.SmartToolbarController NO-
UNDO.
 DEFINE PRIVATE VARIABLE CustomerForm_Fill_Panel AS
System.Windows.Forms.Panel NO-UNDO.
 (…)

©2011 Consultingwerk Ltd. – all right reserved 64

Set configurations for the SmartToolbarController

You will now modify the appearance and the functionality of CustomerToolbar.

 Use the Properties view to set properties for CustomerToolbar.

 Select the designer verb Default Ribbon Configuration to change the appearance of the

SmartToolbarController from a Menu to a Ribbon.

Designer Verb’s are accessible from the context menu of a Component or Control or are shown as

hyperlinks under the property grid.

The Default Ribbon Configuration is a standardized Ribbon design provided by the SmartComponent

Library. This design can be customized e.g. by dragging around the buttons or adding additional

Ribbon tabs, groups or tools.

For more information about customizing the Ribbon refer to chapter Ribbon Configuration in the

appendix of the tutorial.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 65

©2011 Consultingwerk Ltd. – all right reserved 66

3. Add a SmartBusinessEntity Adapter

As you learned so far Business Entities are business-centric, not data-centric and do not have any

responsibility for accessing data sources or for retrieving or updating data from a database. They are

normally paired with Data Access objects (…DataAccess.cls) that manage the connection to the

actual data sources. The DataAccess class was generated with the Business Entity. However the

layered architecture of the SmartComponent Library and the OpenEdge Reference Architecture,

makes the Business Entity the actual data provider for the front end. The fact that the Business Entity

will typically delegate this functionality to the Data Access Object is encapsulated at the backend.

To use the CustomerBusinessEntity you created earlier in the tutorial for data access in the

CustomerForm, you need a SmartBusinessEntity Adapter Component which transparently provides

all the functionality to have access to the Business Entity on the backend.

 To add a SmartBusinessEntityAdapter to the Form double-click on the Component in the

Toolbox.

The new Component smartBusinessEntityAdapter1 has been added to the non-visual section of the

design canvas.

©2011 Consultingwerk Ltd. – all right reserved 67

 Change Property Name to CustomerAdapter.

The result should look like this:

To select the Business Entity this adapter will work with, you may hand type the Business Entities

class name to Property EntityName in the property sheet or use the Designer Verb Select
BusinessEntity The Designer Verb will open a dialog that lists all Business Entities found in your

current project and provides a simplified way of entering the EntityName property in the property grid.

©2011 Consultingwerk Ltd. – all right reserved 68

The BusinessEntity Picker dialog opens.

 Choose the Business Entity CustomerBusinessEntity from the MyBusinessEntities package and

click OK.

©2011 Consultingwerk Ltd. – all right reserved 69

Next you are going to select Temp-Table s from the Business Entities ProDataSet schema. These

Temp-Tables will be read from the Business Entity and navigated using the

SmartBusinessEntityAdapter Component. You can select one or more Temp-Tables using a dialog or

enter the first Temp-Table name in the EntityTable property and the additional Temp-Table names in

the EntityView property.

 To select the necessary Temp-Table (s), select the designer verb Select Table.

The SmartBusinessEntity TablePicker dialog opens.

 Check the eCustomer and eSalesrep table on the left side.

 Check eSalesrep on the right side; indicating that you wish to join both tables with each other and

navigate the joined query result on the user interface.

 Click OK.

 It is recommended to enable batching for your sample application to optimize the usage of

system resources. Otherwise the Data Access Object would read all available data from the data

source at one stroke which might not be an optimal use of resources and cause delays when starting

the Form.

When you enable batching on your SmartBusinessEntityAdapter instance the data will be read in

small chunks. As the user navigates further in the available data the SmartBusinessEntityAdapter will

automatically request further chunks of data. This behavior is similar to the data handling in the

classical progress browse widget. To enable batching for the customerAdapter set the property

BatchSize to 100, which is a reasonable setting.

©2011 Consultingwerk Ltd. – all right reserved 70

 Congratulation! The Business Entity CustomerBusinessEntity is connected to your

CustomerForm. Your user interface will now have access to the data from the database.

4. Add a SmartBusinessEntityBindingSource

In the next chapter you are going to add a SmartDataBrowser Control to your UI that shows customer

data in list format and allows navigation using keyboard or mouse actions. You will need the schema

information of the Business Entities Dataset Temp-Table at design time schema to be able to format

and order the columns of the browser Control. The Data Adapter you have just created in the previous

chapter is not designed to provide schema at design time.

Consultingwerk provides the SmartBusinessEntityBindingSource Component for you as part of the

OERA client infrastructure. It is an enhanced version of the ProBindingSource Component from

Progress Software that makes data from an OpenEdge database such as a ProDataset, a Query or a

Buffer available for binding to .NET Controls. The main purpose of the

SmartBusinessEntityBindingSource right now is to provide schema information at design time. At

©2011 Consultingwerk Ltd. – all right reserved 71

runtime it will bind the Controls to the data that the SmartBusinessEntityAdapter has read from the

backend; it does not read or display data from the database directly!

 To add a SmartBusinessEntityBindingSource to the Form double-click on the Component in

the Toolbox.

Be careful not to select SmartBindingSource Control instead, which is the basic class for the

specialized SmartComponet Library BindingSources like BusinessEntityBindingSource. However the

SmartBindingSource class cannot be used to perform the following task.

 The SmartBindingSource can be used when the Form should read it’s data directly from the

database and not from an OERA backend.

©2011 Consultingwerk Ltd. – all right reserved 72

After adding any of the SmartBindingSource Components to the design canvas the

ProBindingSource Designer will open. It is empty because there is no schema defined so far.

 Close the dialog.

Within the SmartComponent Library we will typically use more advanced versions of defining the

schema information of the BindingSource. We will come back to this later in the tutorial.

A new Component smartBusinessEntityBindingSource1 has been added to the non-visual section of

the designer.

With the new smartBusinessEntityBindingSource1 Component selected:

 Change the Name property to CustomerBindingSource

 Select the designer verb Select BusinessEntity

©2011 Consultingwerk Ltd. – all right reserved 73

The Business Entity Picker dialog opens.

 Select the appropriate BusinessEntity you used for the SmartBusinessEntityAdapter –

CustomerBusinessEntity from the MyBusinessEntities package and click OK.

©2011 Consultingwerk Ltd. – all right reserved 74

 Select the designer verb Select Table.

The SmartBusinessEntity TablePicker dialog opens.

 Select the eCustomer and eSalesrep tables on the left and then eSalesRep on the right and

choose OK.

 Select the designer verb Import schema.

A message appears to inform you that new schema has been imported into CustomerBindingSource.

The schema has been requested from the BusinessEntity and has been imported into the

ProBindingSource schema information.

The Properties view of CustomerBindingSource should look like this:

©2011 Consultingwerk Ltd. – all right reserved 75

 Select the designer verb ProBindingSource Designer.

The ProBindingSource Designer you closed earlier in this tutorial opens and shows the schema for

the eCustomer Temp-Table of your CustomerBusinessEntitiy. When you scroll further down in the list

of fields you will see that the fields from the eSalesRep table (like MonthQuota) will appear there as

well.

©2011 Consultingwerk Ltd. – all right reserved 76

 Congratulation! You successfully added all non-visual Components to your Form. Your

Design Area should look like this:

©2011 Consultingwerk Ltd. – all right reserved 77

5. Add a SmartDataBrowser

You are now ready to add a SmartDataBrowser Control to your CustomerForm to show data. Note,

that the SmartComponent Library does alternatively provide an updatable browser which can be used

to update data in the grid.

 To add a SmartDataBrowser to the Form double-click on the Control in the Toolbox.

The UltraWinGrid Quick Start dialog opens that will guide you to the rest of the setup for a

SmartDataBrowser Control.

The SmartDataBrowser is an enhanced version (through inheritance) of the UltraGrid Control from

Infragistics. Most of the design time functionality comes from Infragistics, e.g. the Quick Start dialog.

The SmartComponent Library is designed to offer the same options as the underlying Infragistics

Controls do – both at runtime and design time.

©2011 Consultingwerk Ltd. – all right reserved 78

To set up all necessary settings do the following:

 First specify the Data Schema.

 Choose Bind the Control to an existing DataSource now from the pull down menu.

 Click Next.
 From the drop down list select the DataSource Component CustomerBindingSource you added

earlier to the Form.

 You don’t need to make any changes to the browser Control so far.

 Click Finish to exit the dialog.

©2011 Consultingwerk Ltd. – all right reserved 79

 For more information about the browser setting refer to Online Help from Infragistics:

http://www.infragistics.com/support/documentation.aspx#OnlineDocumentation

 Rename the Control to CustomerBrowser.
 To automatically maximize the SmartDataBrowser in the Form use the Properties view and set

the property Dock to Fill.

From now on the .NET Framework will always resize the Control to the maximum available size, no

matter what will cause the Form to resize at runtime. Even maximizing or minimizing the Ribbon will

cause the SmartDataBrowser to resize properly.

Your Form should look like this:

©2011 Consultingwerk Ltd. – all right reserved 80

http://www.infragistics.com/support/documentation.aspx%23OnlineDocumentation

©2011 Consultingwerk Ltd. – all right reserved 81

6. Define Links

If you run the Form Customer Overview you will see the SmartDataBrowser Control and the Ribbon

but you won’t see any data in the browse Control, because, as already mentioned, the BindingSource

Control does not read or display data and we have not yet connected the browser to the

SmartBusinessEntityAdapter that will actually read the data.

The complete read and update functionality is provided to you in several methods in the class

hierarchy of the SmartComponent Library Controls and Components. All you have to do is to invoke

the appropriate methods and connect the Controls or Components. You do this by defining links

between Controls.

A Link is a connection between two Controls or Components, like a SmartDataBrowser and its Data

Source, and defines how the Controls interact with each other and the kind of interaction in the form

of messages (method calls) that are passed between them. In a linked relationship one Control or

Component is always the source and the other one is the target for information.

Typically the link is defined using the property sheet of the target because the target will need to know

the source more than the source needs to know the target. Also typically a link target will have exactly

one single source for any link, but a source (like a SmartBusinessEntityAdapter as a data source) can

interact with multiple link targets at the same time.

©2011 Consultingwerk Ltd. – all right reserved 82

The link types you can specify when placing Controls or Components into a Form:

Link type Description Target Control > Source Control
Data Enables dataflow from the data source object to

the visualization objects and modification

(update) of the data in reverse order

SmartDataBrowser > SmartBusinessEntityAdapter

SmartDataViewer > SmartBusinessEntityAdapter

Navigation Enables the SmartToolbarController to instruct a

SmartBusinessEntityAdapter to move to the

next, previous, first or last record

SmartBusinessEntityAdapter > SmartToolbarController

TableIO Enables the SmartToolbarController to Control a

visual Control to modify, create or delete data.

SmartUpdatableBrowser > SmartToolbarController

SmartViewerControl > SmartToolbarController

GroupAssign Provides a way to update a record that is

displayed in more than one SmartDataViewer.

All data of a defined SmartGroupAssign group

will be saved simultaneously. All group members

must refer to the same Temp-Table (s) of the

same SmartBusinessEntityAdapter. A

SmartGroupAssign Link is typically used when

data from a single record is presented on two

pages of a tab folder.

SmartViewerControl (SmartGroupAssignTarget) ->

SmartViewerControl (SmartGroupAssignSource)

©2011 Consultingwerk Ltd. – all right reserved 83

To display data in the browser you need to define a Data-Link between the SmartDataBrowser

Control and the CustomerAdapter Component.

To navigate through the records using the toolbar buttons you need to define a Navigation Link

between the CustomerAdapter and CustomerToolbar.

In the SmartComponent Library links are defined using properties. The property names provided by

the SmartComponent Library define the appropriate links and likewise qualify link type and direction.

In other words the property LinkDataSource means: “link the selected Control to its data source”.

That makes it very easy for you to set all links properly.

©2011 Consultingwerk Ltd. – all right reserved 84

Define a Data Link to display data in the SmartDataBrowser

 To provide data for the SmartDataBrowser, set the property LinkDataSource of the

CustomerBrowser Control to CustomerAdapter.

©2011 Consultingwerk Ltd. – all right reserved 85

Define a Navigation Link to navigate data using the buttons in the toolbar

 To navigate the data, set the property LinkNavigationSource of the CustomerAdapter Control to

CustomerToolbar.

©2011 Consultingwerk Ltd. – all right reserved 86

Write the required initialization Code

To instruct the SmartBusinessEntityAdapter to read data from the backend you need to invoke the

RetrieveData method of the CustomerAdapter instance. This can be done in the constructor of the

Form by adding the following code after the call to the InitializeComponent () method. Alternatively

you can invoke the RetrieveData method in the OnLoad method override of the Form

(http://msdn.microsoft.com/en-us/library/system.windows.forms.form.onload.aspx).

 Prior to the call to InitializeComponent () in the Constructor of the Form, the instance of the

CustomerAdapter has not yet been created and the call to RetrieveData () would fail!

 Save and test your Form.

The result should look like this!

 Congratulation! You finished your first Form using the SmartComponent Library.

CONSTRUCTOR PUBLIC CustomerForm ():

 SUPER().
 InitializeComponent().

 THIS-OBJECT:CustomerAdapter:RetrieveData () .

CATCH e AS Progress.Lang.Error:
UNDO, THROW e.
END CATCH.

END CONSTRUCTOR.

©2011 Consultingwerk Ltd. – all right reserved 87

http://msdn.microsoft.com/en-us/library/system.windows.forms.form.onload.aspx

7. Create a new Form for Customer Details

To show dependent data like customer details, order or orderline information you build a new Form

with a tab Control (alternatively you can also present the detail data in the same Form, however using

two Forms is a very common approach). The tab Control manages Controls on multiple pages in a

Container.

 Create a new Form CustomerDetailForm in your MyGUI directory.

Characteristics of the new Form CustomerDetailForm:

 Change the super class reference to

Consultingwerk.SmartComponents.Base.SmartWindowForm.

 Add a SmartToolbarController, load the Default Ribbon configuration and rename it to

CustomerDetailToolbar.

You already know how to create a new Form. If you need any assistance refer to chapter 1. Create a

new Form Customer Overwiew.

The screen of the New ABL Form wizard should look like this:

©2011 Consultingwerk Ltd. – all right reserved 88

 Click Finish.

 Change the property Text of the Form to Customer Detail to provide a meaningful title of the

Form.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 89

8. Insert a Tab Control to a Form

 To insert a Tab Control, go to the OpenEdge Ultra Controls group of the Toolbar and select

UltraTabControl.

 Don’t add an UltraTabStripControl to the Form. For more information about the actual

difference between the UltraTabControl and the UltraTabStrip Control please refer to the Infragistics

Documentation.

The result should look like this:

 To add a new tab or to edit the Control, open the SmartTag for the Control and select Edit Tab.

The SmartTag is the tiny arrow pointing to the right on the top right corner of the UltraTabControl. The

SmartTag can typically be used to Control the most important properties of a Control in the Visual

Designer.

©2011 Consultingwerk Ltd. – all right reserved 90

The UltraTab Editor opens.

 Select button Add (Hinzufügen in the screenshot taken on a German installation of Windows) to

add a new tab and change the properties Text and Key to Customer, where Text is just the label

for the tab and Key is the internal unique identifier of the tab page.

You can search for a tab by that Key and use it to identify which tab is currently chosen. We come

back to this later in this tutorial.

©2011 Consultingwerk Ltd. – all right reserved 91

 Click OK.

Change the following properties:

 Name: CustomerDetailTab

 View Style: Office 2007

 Dock: Fill

©2011 Consultingwerk Ltd. – all right reserved 92

So far you have one tab defined in your tab Control.

The result should look like this.

In the next chapter you will learn how to create a viewer Control to display customer detail data and

how to insert the viewer Control to the Customer tab page. Further in this tutorial you will add two

additional tabs for order and orderline information.

©2011 Consultingwerk Ltd. – all right reserved 93

9. Create a SmartViewerControl CustomerDetailViewer

In the previous chapter you have assembled the Customer Overview Form that lists all customer

records in a browse Control. In this lesson you will learn how to create a viewer Control that shows

detail information for a single customer and allows the user to modify the record or create new

records.

In the SmartComponent Library a viewer Control is based in the UserControl type. A User Control is

a special type of inherited Control that allows you to combine Controls into a common container that

can be reused. In this lesson you combine Fill-Ins from the customer table.

The end result of the CustomerDetailViewer will look like this:

 To create a new ABL User Control, select File > New > ABL User Control from the menu.

Make sure that the Control is saved to your MyGUI folder and inherits from class

Consultingwerk.SmartComponents.Base.SmartViewerControl to leverage the behavior that is

provided with this base type.

©2011 Consultingwerk Ltd. – all right reserved 94

 To change the super class in the Inherits field of the wizard, click Browse and type in smart in the

Super Class Selection dialog. Select class SmartViewerControl and click OK.

The result screen of the New ABL User Control dialog should look like this:

©2011 Consultingwerk Ltd. – all right reserved 95

 Click Finish.

The User Control Form is opened in the Visual Designer.

©2011 Consultingwerk Ltd. – all right reserved 96

Duplicate the Binding Source

As mentioned earlier in the tutorial a .NET Control cannot directly connect to a Business Entity or an

Entity Adapter. Therefore you need a BindingSource Control that binds the data to visualization

Controls like a browser or a viewer. The BindingSource you need for the Customer Detail Form is

typically identical to the one you created earlier for the Customer Overview Form. You can repeat the

steps described in chapter 4. Add a SmartBusinessEntityBindingSource or copy-paste the

BindingSource Component from the Form design.

To copy the SmartBusinessEntityBindingSource:

 Open the file CustomerForm.cls, select CustomerBindingSource and copy it.

 Open the file CustomerDetailViewerControl.cls and paste it.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 97

Add Fields to the User Control

After you copied the SmartBindingSource Control to the User Control you have access to the schema,

because the schema has been copied along with all other properties of the Component Instance and

you can directly add the fields you need for the viewer.

 To add fields, use the Properties view and select the designer verb Add Fields for

CustomerBindingSource.

 The Add fields to Visual Designer dialog opens.

 Select the fields of your choice and click OK.

The Add Fields functionality of the SmartBusinessEntityBindingSource and all other

SmartBindingSource Components is a very convenient method of adding fields for a viewer. Based on

the data type of each field added to the Viewer design, standardized properties for the Controls will be

used.

 The functionality of the SmartViewerControl does not rely on this method of adding Controls to

the SmartViewer. You may add any .NET Control from your Visual Designer Toolbox and specify

Data Bindings for any property required. Please consult the documentation of your Control’s vendor

for details about the Data Binding capabilities.

To change the order of the fields you can drag and drop them to the desired location. Colored

helplines (Snaplines) help you to align the fields properly.

©2011 Consultingwerk Ltd. – all right reserved 98

 Use the SmartTag of the comments field to change the layout to Multiline (Editor) and the

appearance to Office 2007 style.

 Increase the new field.

 Mark all remaining UltraTextEditor Controls (Fill-Ins) and change the property DisplayStyle to

Office 2007 as well.

©2011 Consultingwerk Ltd. – all right reserved 99

The final result should look like this:

 Congratulation! You successfully created a SmartViewerControl.

 The User Control itself cannot be executed. To execute it you must place it on a Form. We will

show you how to do this in the next chapter.

©2011 Consultingwerk Ltd. – all right reserved 100

10. Insert a User Control in a Form

You already have the Customer Detail Form with a tab Control and you have created a SmartViewer

Control to display customer detail data. In this chapter you will bring those two together. You’ll add the

User Control in the Tab Control.

To insert the User Control in the Form follow these steps:

 Open the file CustomerDetailForm.cls

 Select the Form Control itself by clicking on the Window Title bar

 In the Properties view select the designer verb Insert UserControl for Form
CustomerDetailForm.

 The designer verb Insert UserControl is a special feature of SmartWindowForm derived

classes. Normally you must add the user Control to the toolbar to first before adding it to a Form.

The Select UserControl class dialog opens.

 Select CustomerDetailViewerControl you created earlier in the tutorial and click OK.

©2011 Consultingwerk Ltd. – all right reserved 101

The wizard functionality cannot Control the actual location of the new UserControl instance on the

Form. In rare cases the UserControl is created in the background of some other Control(s) so that you

may not see it. A message reminds you to refer to the Outline view if this will happen.

©2011 Consultingwerk Ltd. – all right reserved 102

Change the following properties for CustomerDetailViewer:

 Property Name: CustomerDetailViewer

 Property Dock: Fill

The result screen should look like this:

©2011 Consultingwerk Ltd. – all right reserved 103

11. Specify Links for Form Customer Detail

In order to show detail data for customer records in the SmartViewerControl you need to specify a

Data Link to CustomerAdapter in the Form Customer Overview. Because the Controls and

Components in each of the Forms are typically encapsulated, you have to define a property as a

method that allows setting a link at runtime.

For update purposes you need a Table-IO Link from CustomerDetailToolbar in the Customer Detail

Form to the customerDetailViewer in Form Customer Detail.

Define a Table I/O Link

 To specify the Table-IO Link, use the Properties view and set the property LinkTabkeIOSource

for customerDetailViewer to CustomerDetailToolbar.

©2011 Consultingwerk Ltd. – all right reserved 104

©2011 Consultingwerk Ltd. – all right reserved 105

Define a Data Link to the CustomerAdapter in Form Customer Overview

In order to show detail data for customer records in the SmartViewerControl you need to specify a

Data Link between the CustomerDetailViewer Control in Form Customer Detail and the

CustomerAdapter component in the Form Customer Overview.

To define a Data Link between two forms you must define your own property.

To add a new property, open the file CustomerDetailForm.cls and switch to the ABL Editor if it is not

already open. You may switch from the Design view to the source code using the shortcut F9.

Right-click on the code editor and select Source > Add Property.

The Add Property dialog opens.

 Name the new property DataSourceFromOverview.

 Select As class and click Browse.

 In the Type Selection dialog type in smart as filter text and choose class

Consultingwerk.SmartComponents.Base.SmartDataAdapter.

 Click OK.

 Check Insert implementation for the Set method.

 Leave all other settings as default.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 106

 Click Button Generate.

The new property is generated.

©2011 Consultingwerk Ltd. – all right reserved 107

The Property SET implementation (part of the property definition) needs to be defined with an INPUT

Parameter arg of the same type as the Property is defined.

Why is that? When a value is assigned to a Property, e.g. PropertyName = “Test”, an internal SET

method is called: SetPropertyName (INPUT arg AS CHAR). The input parameter (arg) must be

assigned to the PropertyName variable. If not, the Property does not have the correct value.

 Add the following code to the Property SET implementation to define a Data Link between the

CustomerDetailViewer (data target) in the Customer Detail Form and the SmartDataAdapter (data

source), which is the CustomerAdapater, in the Customer Overview Form.

DEFINE PUBLIC PROPERTY DataSourceFromOverview AS
Consultingwerk.SmartComponents.Base.SmartDataAdapter NO-UNDO
 GET.
 SET(INPUT arg AS
 Consultingwerk.SmartComponents.Base.SmartDataAdapter):

 END SET.

DEFINE PUBLIC PROPERTY DataSourceFromOverview AS
Consultingwerk.SmartComponents.Base.SmartDataAdapter NO-UNDO
 GET.
 SET(INPUT arg AS
 Consultingwerk.SmartComponents.Base.SmartDataAdapter):
 IF NOT VALID-OBJECT (arg) THEN RETURN.
 ASSIGN DataSourceFromOverview = arg.

 customerDetailViewer:LinkDataSource = arg.
 END SET.

©2011 Consultingwerk Ltd. – all right reserved 108

12. Open the Form Customer Detail from Customer Overview

In this chapter you will add code to the Customer Overview Form to open the Customer Detail Form

by double-clicking a record in the browse Control and dynamically adding the link by setting a value to

the property you have created in the previous chapter.

DoubleClick is the default action for the SmartDataBrowser Control. It is defined in class

Consultingwerk.SmartComponents.Implementation.SmartDataBrowser.

 To subscribe the CustomerBrowser Control to the event select the Events tab in the Properties

view and double-click the event DefaultAction as shown below.

The event handler method CustomerBrowser_DefaultAction is automatically defined.

©2011 Consultingwerk Ltd. – all right reserved 109

Add all necessary code for the double-click event

Add the following code in the variable section of the class file to define a reference variable:

Add the following code to the CustomerBrowser_DefaultAction method.

 The code instantiates the class CustomerDetailForm,

 assigns CustomerAdapter as the Data Source for Form Customer Detail,

 shows the Form Customer Detail.

(…)
DEFINE VARIABLE oCustomerDetailForm AS MyGUI.CustomerDetailForm NO-
UNDO.
(…)

METHOD PRIVATE VOID CustomerBrowser_DefaultAction(INPUT sender AS
System.Object, INPUT e AS System.EventArgs):

IF NOT VALID-OBJECT (oCustomerDetailForm)THEN DO:
 oCustomerDetailForm = NEW MyGUI.CustomerDetailForm().
 oCustomerDetailForm:DataSourceFromOverview = CustomerAdapter.
 oCustomerDetailForm:show().
END.

ELSE
 oCustomerDetailForm:BringToFront().

END METHOD.

©2011 Consultingwerk Ltd. – all right reserved 110

 Save and test your application!

 Double-click a customer record.

The Customer Detail dialog should open where you can update the selected record, delete it or create

a new one.

 Congratulation! You finished the customer part of your sample application! You’re going to

build the order part in the next chapters.

©2011 Consultingwerk Ltd. – all right reserved 111

II. Order and Order Lines

In this chapter you will extend the Customer Detail Form to show further information about order

header and order lines. The Order Header page lists all orders of the selected customer in a browser

and in a viewer we will provide update functionality to add new or modify existing order records.

You already know how to create browser Controls, viewer Controls and how to define the appropriate

links. So the explanations in this chapter are reduced to the essentials in list form with some

screenshots to assist you.

The final result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 112

Follow this roadmap to build up the second part of the sample application step by step:

Step To Do Function
1 Create a new Tab for order and order line Modify the properties of the tab Control

2 Add the OrderAdapter and

OrderBindingSource components

Add the DataSource object for Order and bind

the DataSource object to the visualization

object.

3 Add a SmartDataBrowser for Order

information

Visualization of Order Header information in a

browse Control

4 Customize Code for Order Browser and

specify Links

Communication between Controls to display

or update data

5 Create an User Control OrderDetailViewer Visualization of detail Order information in a

viewer

6 Add Navigation Functionality Define Links

7 Add the OrderLineAdapter and

OrderLineSource components

Add the DataSource object for Order Line and

bind the DataSource object to the

visualization object.

8 Add a SmartDataBrowser for Order Line

information

Visualization of Order Line information in a

browse Control

9 Create an User Control
OrderLineDetailViewer

Visualization of detail Order Line information

in a viewer

10 Add Navigation Functionality for Order Lines Define Links

©2011 Consultingwerk Ltd. – all right reserved 113

1. Create new Tabs for the Tab Control

At first you must extend the tab Control to show additional tabs for the order header and order line

information. To do so, open the Form CustomerDetailForm.cls and select the Control

CustomerDetailTab you have built earlier in this tutorial.

Use the SmartTag of the Control and click Edit Tabs. The UltraTab Listeditor opens.

 Add a tab for Order Header
o Text: Order Header

o Key: Order

 Add a tab for Order Lines

o Text: Order Lines

o Key: Orderline

 Click OK

As a result you have two additional tabs and it should look like this:

©2011 Consultingwerk Ltd. – all right reserved 114

2. Add the OrderAdapter and OrderBindingSource components

In order to display data in a browser or viewer Control you need access to the OrderBusinessEntity

you created earlier in the tutorial. To provide access to the data, you need to add a

SmartBusinessEntity Adapter and for the data binding at runtime and design time you need to add

a SmartBusinessEntity Binding Source component.

Add a SmartBusinessEntityAdapter from the Toolbox and configure it as shown below:

 Change Property Name to OrderAdapter.

 Use the Designer Verb Select Business Entity and select OrderBusinessEntity.

 Use the Designer Verb Select Tables and select eOrder and eCustomer.

 Make sure that the property ForeignFields is set to custnum, custnum.

 Define a Navigation Link from the CustomerDetailToolbar to the OrderAdapter.

©2011 Consultingwerk Ltd. – all right reserved 115

Add a SmartBusinessEntityBindingSource from the Toolbox and configure it as shown below:

 Close the ProBindingSource Designer.

 Change Property Name to OrderBindingSource.
 Use the Designer Verb Select Business Entity to select OrderBusinessEntity.

 Use the Designer Verb Select Tables to select eOrder only.

 Click the Designer Verb Import Schema.

©2011 Consultingwerk Ltd. – all right reserved 116

3. Add a SmartDataBrowser for Order information

You are now ready to add a SmartDataBrowser visualization Control to the Order Header tab of

CustomerDetailForm to show data.

Add a new SmartDataBrowser Control from the Toolbox and configure it as shown below:

 Switch to Tab Order Header. You can select the Control from the properties drop down list or

simply click on it.

 Add a new SmartDataBrowser Control. The UltraWinGrid QuickStart dialog opens.

 Select Bind the Control to an existing DataSource now.

 Select OrderBindingSource from the drop down list.

 Click Finish.
 Change Property Name to OrderBrowser.

 Change Property Dock to Left.

 Define a Data Link from the OrderAdapter to the OrderBrowser.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 117

When you save and test your application so far you will recognize, that the OrderBrowser Control

doesn’t show any data for the selected customer. You need some code to link the

SmartBusinessEntityAdapter for the OrderBusinessEntity to the Business Entity for customers of the

CustomerOverview Form you created earlier in this tutorial.

©2011 Consultingwerk Ltd. – all right reserved 118

4. Customize code for Order Browser

To show related order data for selected customer records you must register the OrderAdapter as a

data source for the CustomerDetail Form. In the Form Customer Detail, you have already defined a

property DataSourceFromOverview that provides a Data Link between the CustomerDetailViewer and

the CustomerAdapter in the Form Customer Overview (pass through link).

 Open the file CustomerDetailForm.cls in source view.

 Locate the source code of the Property DataSourceFromOverview

 Add the code below.

 Save and test you application.

At runtime the Customer Detail Form on the Order Header Tab should look like this:

DEFINE PUBLIC PROPERTY DataSourceFromOverview AS
Consultingwerk.SmartComponents.Base.SmartDataAdapter NO-UNDO
 GET.
 SET(INPUT arg AS
 Consultingwerk.SmartComponents.Base.SmartDataAdapter):
 IF NOT VALID-OBJECT (arg) THEN RETURN.
 ASSIGN DataSourceFromOverview = arg.

 customerDetailViewer:LinkDataSource = arg.

/* Order */
 THIS-OBJECT:OrderAdapter:SmartDataSource = arg.

 END SET.

©2011 Consultingwerk Ltd. – all right reserved 119

5. Create a User Control OrderDetailViewer

In this chapter you create a new User Control to show detailed order information and to provide

update functionality for order records in a Viewer Control.

For more information about how to create User Controls refer to chapter 9. Create a User Control

CustomerDetailViewer.

Create a new ABL User Control and use the following settings in the New ABL User Control wizard as

shown below:

 Package root: your project folder

 Package: your GUI folder

 User Control name: OrderDetailViewerControl

 Inherits: SmartViewerControl

©2011 Consultingwerk Ltd. – all right reserved 120

 Copy the OrderBindingSource from Form Customer Detail and paste it to your new User Control.

This will simplify your task as you do not have to select the Business Entity and tables again.

 With the OrderBindingSource component selected click the Designer Verb Add Fields and select

the fields shown below and order them in a similar fashion.

 Select all Fill-Ins and change Property DisplayStyle to Office2007 and save your viewer Control.

©2011 Consultingwerk Ltd. – all right reserved 121

Insert the User Control into the Form

To insert the OrderDetail viewer to the Order Header tab do the following:

 Open the file CustomerDetailForm.cls.

 Switch to the Tab Order Header and make sure that the Form is selected.

 Select the Designer Verb Insert UserControl.
o The Select UserControl class dialog opens.

o From the list select OrderDetailViewerControl.

 Click OK.

 A message appears to inform you that the UserControl might have been created in the

background.

o If you cannot see the Control on the design surface, use the Outline View to locate it and

bring it to the front.

 Click OK.

 Drag the UserControl to the right side of the Form.

 Change Property Dock to Fill.
 Set Property LinkDataSource to OrderAdapter.

 Set Property LinkTableIOSource to CustomerDetailToolbar.

 Save and test you application.

At runtime the Order Header tab of the Customer Detail Form should look like this:

©2011 Consultingwerk Ltd. – all right reserved 122

6. Add Navigation Functionality

So far the Toolbar CustomerDetailToolbar in Form Customer Detail is ready for update purposes like

add, delete or update but not yet for any kind of navigation. When you have finished this chapter you

will be able to navigate through the records depending on which tab you selected.

Navigating the Customer records

We start with the customer records. First of all you need a Navigation Link between the

CustomerAdapter component as the Navigation-Target and the CustomerDetailToolbar Control as the

Navigation-Source. As you already know you must provide inter-form-communication manually

because the encapsulation prohibits any predefined link option between objects contained on two

different forms.

 Open the file CustomerDetailForm.cls in source code view.

 Go to the Property DataSourceFromOverview and add the code shown inside the red box.

©2011 Consultingwerk Ltd. – all right reserved 123

This code checks whether the passed in SmartDataAdapter has a valid SmartNavigationSource. If not

the SmartNavigationSource is set to CustomerDetailToolbar.

If there is already a valid SmartNavigationSource we can register another one by calling the method

AddSmartNavigationSource () of the SmartDataAdapter and pass it to the SmartToolbarController

instance.

 Save and test you application.

Navigating the Order records

So far you implemented navigation functionality for the Customer tab, so that it actually navigates the

record of the Customer Overview Form. When you switch to the Order Header tab you’ll find out that it

navigates through the customer records as well and not through the depending order records. What

you will have to do is to write an event handler method, that checks which tab is active and then

activates all the links from the toolbar component for the tab page and disables links you do not need

in that context.

 To add a suitable event to the Form, double-click the event ActiveTabChanged for the Control

CustomerDetailTab.

DEFINE PUBLIC PROPERTY DataSourceFromOverview AS
Consultingwerk.SmartComponents.Base.SmartDataAdapter NO-UNDO
 GET.
 SET(INPUT arg AS
 Consultingwerk.SmartComponents.Base.SmartDataAdapter):
 IF NOT VALID-OBJECT (arg) THEN RETURN.
 ASSIGN DataSourceFromOverview = arg.

 customerDetailViewer:LinkDataSource = arg.

 IF NOT VALID-OBJECT (arg:SmartNavigationSource) THEN
 arg:SmartNavigationSource = THIS-OBJECT:CustomerDetailToolbar.

 ELSE
 arg:AddSmartNavigationSource (THIS-OBJECT:CustomerDetailToolbar).

 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartNavigationTarget(arg).

 /* Order */
 THIS-OBJECT:OrderAdapter:SmartDataSource = arg.

 END SET.

©2011 Consultingwerk Ltd. – all right reserved 124

This generates an Event Handler Method CustomerDetailTab_ActiveTabChanged.

Open the file CustomerDetailForm.cls in source code view.

Got to the method CustomerDetailTab_ActiveTabChanged and write the code below:

©2011 Consultingwerk Ltd. – all right reserved 125

The code does the following:

 checks which tab is selected after the user has changed the current tab page,

 activates the necessary Navigation and TableIO link from the toolbar,

 deactivates the DataAdapters which are not needed because the data of those is not currently

shown on the active tab.

To identify the Tab you use the Tab’s Key property you defined earlier in this tutorial as this provides

a unique name.

You can add the code for the OrderLineAdapter if you want to as a comment; right now it may cause

compilation errors, but you will need it soon.

METHOD PRIVATE VOID CustomerDetailTab_ActiveTabChanged
 (INPUT sender AS System.Object, INPUT e AS
 Infragistics.Win.UltraWinTabControl.ActiveTabChangedEventArgs):

CASE e:Tab:Key:
 WHEN "Customer":U THEN DO:
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartNavigationTarget
 (DataSourceFromOverview).
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartTableIOTarget
 (THIS-OBJECT:customerDetailViewer).

 OrderAdapter:SmartDataSourceActive = FALSE.
 /* OrderLineAdapter:SmartDataSourceActive = FALSE.*/
 END.

 WHEN "Order":U THEN DO:
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartNavigationTarget
 (THIS-OBJECT:OrderAdapter).
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartTableIOTarget
 (THIS-OBJECT:orderDetailViewer).

 OrderAdapter:SmartDataSourceActive = TRUE.
 /* OrderLineAdapter:SmartDataSourceActive = FALSE.*/
 END.

END CASE.

END METHOD.

©2011 Consultingwerk Ltd. – all right reserved 126

7. Add the OrderLineAdapter and OrderLineBindingSource

In order to display data in a browser or viewer Control you need access to the Orderline records from

the OrderBusinessEntity you created earlier in the tutorial. To provide this access to the data, you

need a SmartBusinessEntity Adapter and for runtime schema you must add a

SmartBusinessEntity Binding Source.

Add a SmartBusinessEntityAdapter from the Toolbox and configure it as shown below:

 Change Property Name to OrderLineAdapter.

 Use the Designer Verb Select Business Entity and select OrderBusinessEntity.

 Use the Designer Verb Select Tables and select eOrderline and eItem.

 Join eOrderline and eItem.

 Make sure that the Foreign Fields are set to ordernum, ordernum.

 Define a DataLink from the OrderAdapter to the OrderLineAdapter.

 Define a Navigation Link from CustomerDetailToolbar to OrderLineAdapter.

©2011 Consultingwerk Ltd. – all right reserved 127

Add a SmartBusinessEntityBindingSource from the Toolbox and configure it as shown below:

 Close the ProBindingSource Designer.

 Change Property Name to OrderLineBindingSource.
 Use the Designer Verb Select Business Entity to select OrderBusinessEntity.

 Use the Designer Verb Select Tables to select eOrderLine and eItem.

 Click the Designer Verb Import Schema.

8. Add a SmartDataBrowser for Order Line information

You are now ready to add a SmartDataBrowser visualization Control to the Order Line tab of

CustomerDetailForm to show data.

Add a new SmartDataBrowser Control from the Toolbox and configure it as shown below:

 Switch to Tab Order Line. You can select the Control from the properties drop down list or simply

click it.

 Add a new SmartDataBrowser Control. The UltraWinGrid QuickStart dialog opens.

 Select Bind the Control to an existing DataSource now.

 Select OrderLineBindingSource from the drop down list.

 Click Finish.

©2011 Consultingwerk Ltd. – all right reserved 128

 Change Property Name to OrderLineBrowser.

 Change Property Dock to Left.

 Define a Data Link from the OrderLineAdapter to the OrderLineBrowser.

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 129

You don’t need any coding here because you defined a DataLink between OrderLineAdapter and

OrderAdapter in chapter 7. Add the OrderLineAdapter and OrderLineBindingSource.

The code we added in the former task was required for linking Controls and Components that are

placed within different Forms. The OrderAdapter and the OrderLineAdapter are located in the same

Form and thus you can use the LinkDataSource property on the target SmartBusinessEntityAdapter

to add the link.

At runtime the Order Lines Tab for Customer 1, order 70 of Customer Detail Form should look like

this:

 Note, that the actual data displayed may differ depending on the current data in your database.

©2011 Consultingwerk Ltd. – all right reserved 130

9. Create a User Control OrderLineDetailViewer

In this chapter you will create a new User Control to show detailed order line information and to

provide update functionality for order line records in a Viewer Control.

For more information about how to create a SmartViewerControl User Controls refer to chapter 9.

Create a User Control CustomerDetailViewer.

Create a new ABL User Control and configure it as shown below:

 Package root: your project folder

 Package: your folder for the GUI objects

 User Control name: OrderLineDetailViewerControl

 Inherits: SmartViewerControl (Consultingwerk.SmartComponents.Base.SmartViewerControl)

 Add routine-level error-handling: Checked

©2011 Consultingwerk Ltd. – all right reserved 131

 Copy the OrderLineBindingSource from the Customer Detail Form and paste it to your new User

Control (using the system clipboard).

 With the OrderLineBindingSource component selected click Designer Verb Add Fields and build

the viewer as shown below.

 Select all Fill-Ins and change property DisplayStyle to Office2007.

©2011 Consultingwerk Ltd. – all right reserved 132

Insert the User Control to the Form

To insert the OrderLineDetail viewer to the Order Lines tab please process as follows:

 Open the file CustomerDetailForm.cls.

 Switch to the Tab Order Lines and make sure that the Form is selected.

 Select the Designer Verb Insert UserControl.
o The Select UserControl class dialog opens.

o From the list select OrderLineViewerControl.

 Click OK.

 A message appears to inform you that the UserControl might have been placed in the background

or behind other Controls.

o If you cannot see the Control, use the Outline View to bring it to the front.

 Click OK.

 Drag the UserControl to the right side of the Form.

 Change Property Dock to Fill.
 Set Property LinkDataSource to OrderLineAdapter.

 Set Property LinkTableIOSource to CustomerDetailToolbar.

 Save and test you application.

At runtime the Customer Detail Form for order line data should look like this:

©2011 Consultingwerk Ltd. – all right reserved 133

10. Add Navigation Functionality

To complete the navigation function for the order lines based on the current selected tab page (as you

have already implemented for customer and order) simply add some code to the event handler

method CustomerDetailTab_ActiveTabChanged in CustomerDetailForm.cls.

The code you need for order line is highlighted below:

Code for Order Lines

 Congratulation! You successfully added the Order and OrderLine information to your sample

application.

METHOD PRIVATE VOID CustomerDetailTab_ActiveTabChanged
 (INPUT sender AS System.Object, INPUT e AS
 Infragistics.Win.UltraWinTabControl.ActiveTabChangedEventArgs):

CASE e:Tab:Key:
 WHEN "Customer":U THEN DO:
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartNavigationTarget
 (DataSourceFromOverview).
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartTableIOTarget
 (THIS-OBJECT:customerDetailViewer).

 OrderAdapter:SmartDataSourceActive = FALSE.
 OrderLineAdapter:SmartDataSourceActive = FALSE.
 END.

 WHEN "Order":U THEN DO:
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartNavigationTarget
 (THIS-OBJECT:OrderAdapter).
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartTableIOTarget
 (THIS-OBJECT:orderDetailViewer).

 OrderAdapter:SmartDataSourceActive = TRUE.
 OrderLineAdapter:SmartDataSourceActive = FALSE.
 END.

 WHEN "Orderline":U THEN DO:
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartNavigationTarget
 (THIS-OBJECT:OrderLineAdapter).
 THIS-OBJECT:CustomerDetailToolbar:ActivateSmartTableIOTarget
 (THIS-OBJECT:orderLineViewerControl).

 OrderAdapter:SmartDataSourceActive = FALSE.
 OrderLineAdapter:SmartDataSourceActive = TRUE.
 END.

END CASE.

END METHOD.

©2011 Consultingwerk Ltd. – all right reserved 134

Add a Lookup for Salesrep
Normalized relational database schemas (and thus typically many Business Entities or ProDatasets)

are using inherited, foreign keys to link data in two tables. Typically the linking table only contains the

value of a primary unique key (in the sports2000 sample database for instance the

Customer.SalesRep or OrderLine.ItemNum fields) of the linked table instead of duplicating values

(like the SalesRep.RepName or Item.ItemName fields). The unique key values used for linking both

tables can actually be a key meaningful to the user (like in the sports2000 database the actual

customer number, salesrep code or item number) or can be a pure technical key, for instance

generated using a GUID (globally unique identifier).

The SmartBusinessEntityLookup Control can help the user to update values in the linking table using

search and lookup functionality on the linked table. The user can search records by entering a

(partial) key value and the lookup Control will locate the linked record using a

SmartBusinessEntityAdapter accessing a Business Entity on the back end and can display values

(descriptive fields) of the located record. Alternatively the user can use a standardized (or

customizable) lookup dialog using a browser Control and a simple filter mechanism.

For viewing the current key value and updating the key value when you are creating or modifying

records the SmartBusinessEntityLookup Control uses standard .NET data binding on the Value or

Text properties. The lookup also supports the usage of non-meaningful keys (e.g. GUID’s). If you are

using non-meaningful keys you will need to use data binding to the LookupKeyValue property.

©2011 Consultingwerk Ltd. – all right reserved 135

Create a new Business Entity for SalesRep data

You already know how to create Business Entities. Open the Business Entity Designer and create a

new Business Entity SalesRepBusinessEntity containing only one temp table: eSalesRep (=SalesRep

in the sports2000 database).

If you need any assistance please refer to the chapter Developing Business Entities in this tutorial.

Summary for SalesRepBusinessEntity

Field Description

BusinessEntityName SalesRepBusinessEntity

BusinessEntityPurpose Business Entity for SalesRep

BusinessEntityPackage MyBusinessEntities

DatasetControllerName SalesRepDatasetController

DatasetControllerPackage MyBusinessEntities

DatasetPath MyBusinessEntities

DatasetName dsSalesRep

DataAccessName SalesRepDataAccess

DataAccessPackage MyBusinessEntities

©2011 Consultingwerk Ltd. – all right reserved 136

The result should look like this:

Please generate and compile the code for the Business Entity.

©2011 Consultingwerk Ltd. – all right reserved 137

Add a SmartBusinessEntityLookup Control to a Form

 Open the file CustomerDetailViewerControl.cls.

 From the SmartComponents4.NET group in the Toolbox add a SmartBusinessEntityLookup

Control to the OrderLineDetailViewer Control by double-clicking the Control in the Toolbox.

The new Lookup Control appears in the upper left corner of the CustomerDetailViewerControl.

©2011 Consultingwerk Ltd. – all right reserved 138

 The SalesRep Control that you have previously created using the Add Fields wizard is no

longer required. You can delete it from the Viewer design by pressing the DEL key after you have

selected the Control. The SmartBusinessEntityLookup Control is a good replacement for any key

value field.

 Replace the SalesRep Control with the Lookup Control as shown below:

 Change Property DisplayStyle to Office2007.

 Select the Designer Verb AddLookupButton. This will add the lookup button to the Lookup (the

button is shown at the right end of the lookup).

 Delete the field SalesRep and add the Field RepName instead.

 To do this, select the component CustomerBindingSource and click the Designer Verb

AddFields. The Add fields to Visual Designer dialog opens.

 Select the field RepName and click OK.

©2011 Consultingwerk Ltd. – all right reserved 139

 If you cannot see the field RepName, make sure that you joined both tables: eCustomer and

eSalesrep. To test it, select the customerBindingSource component, check whether Property Entity

Join is set to YES and if necessary import the schema again. If you must change the setting open the

Select Tables dialog from the Designer Verb area.

©2011 Consultingwerk Ltd. – all right reserved 140

Select the SalesRepBusinessEntity and the tables to be used by the
Lookup

 To connect the new Lookup Control to the SalesRepBusinessEntity you have created earlier,

mark the Lookup Control and select the Designer Verb SelectBusinessEntity.

 From the Business Entity Picker select SalesRepBusinessEntity and click OK.

 Select the Designer Verb SelectTables by right-clicking the lookup on the design surface.

 Check the eSalesrep table in the tree view on the left.

 Click OK.

©2011 Consultingwerk Ltd. – all right reserved 141

SmartBusinessEntityLookup Designer

In this chapter you are going to make all necessary settings so that the Lookup will work as required.

Consultingwerk provides a graphical Lookup Designer dialog that supports developers when

defining Lookup settings. Alternatively you can set all properties in the property sheet. The Lookup

Designer Dialog offers more support when assigning the properties of the lookup instance.

 To open the Lookup Designer select the Designer Verb LookupDialog on the

SmartBusinessEntityLookup instance.

The SmartBusinessEntityLookup Designer opens.

The tool is separated in two different areas. On the left side you can define all settings concerning the

lookup Control in the SmartViewerControl.

On the right side you define the options for the Lookup dialog, particularly the Lookup Browser and

the filter options. The Lookup Dialog will open, when the user presses the Lookup Button of the

lookup Control.

©2011 Consultingwerk Ltd. – all right reserved 142

For the Lookup Control itself assign the following settings:

Lookup Values Description
Lookup Keys

Key Field SalesRep The Key Field defines the column

from the lookup table (eSalesRep in

this sample) who’s value will be

assigned to the lookup Control itself

(the Value property) when the user

selects a record by entering a (partial)

key in the lookup Control itself or

selects a record from the lookup

dialog.

Key Value

Column

SalesRep The Key Value Column defines the

column from the lookup table

(eSalesRep in this sample) whose

value will be assigned to the

LookupKeyValue property of the

lookup Control when the user selects a

record by entering a (partial) key in the

lookup Control itself or selects a record

from the lookup dialog. The

LookupKeyValue property and thus the

Key Value Column is only required

when using non-meaningful keys in

your database design and/or Business

Entity design.

Mapping Field/Control mapping allows the

lookup Control to assign values (Text

property) to additional Controls in the

Viewer. This is useful to return

additional meaningful values (like the

RepName) from the lookup whenever

the user selects a record. The mapped

fields are updated in a browser using

two combo-box columns.

Mapped Field RepName The Mapped Fields define the fields

from the lookup’s Business Entity that

will be used to assign values to the

mapped controls.

©2011 Consultingwerk Ltd. – all right reserved 143

Mapped Control CustomerBindingSource

_eCustomer_RepName

The mapped controls are the controls

receiving the values from the lookup

business entity.

Lookup Query String FOR EACH

SalesRep WHERE

eSalesRep BEGINS

"&1".

The lookup query string defines the

query used to search for values in the

lookups Business Entity when the user

either leaves the lookup Control or

does not type any keys for 0.75

seconds. The current value of the

lookup Control (potentially a partial

key) is inserted to the query string at

the location of the &1 token. The token

should be put in quotes no matter of

the data-type of the key field.

For the Lookup dialog assign the following settings on the right side:

Lookup Dialog Values Description
Title SalesRep Lookup The title for the lookup dialog, like

“Lookup SalesRep”

Filter Filters can be used by the user to

search records in tables with a lot

of records. The lookup dialog

supports any number of filters you

need (including zero and one). To

keep things simple for the user, a

filter is always applied to a single

field only.

Order 1 The order the filter options should

appear in the lookup dialog.

Fieldname RepName The field from the lookup Business

Entity to filter on.

Operator BEGINS The operator to filter on. Valid

operators are value ABL query

operators.

Browser
Order 1-4 The order of the columns in the

browser

Browse Column 1. Small Image Select the columns for the lookup

©2011 Consultingwerk Ltd. – all right reserved 144

2. RepName

3. SalesRep

4. Region

browser in this order

Lookup-Dialog Query
String

 The query string to be used by the

lookup dialog. Leave empty for

returning all values (filters specified

as the source default query in the

Data Access Object will apply

always).

©2011 Consultingwerk Ltd. – all right reserved 145

The result should look like this:

 With the SalesRepLookup Control selected, expand the Property Group DataBindings and

change the binding of the Property Value to CustomerBindingSource – SalesRep.

Otherwise the Control does not have any data binding and cannot display the actual SalesRep for a

selected record.

©2011 Consultingwerk Ltd. – all right reserved 146

 Save and test your application.

 Open the Customer Detail dialog and activate the update function in the toolbar.

 Click on the Lookup button.

The SalesRep Lookup Dialog opens. It should look like this:

©2011 Consultingwerk Ltd. – all right reserved 147

You see all the Browse Columns you defined in the Lookup Designer and the filter option for

RepName.

Add some more functionality

There is some more work to do to complete the Lookup functionality:

 Disable the field RepName in the CustomerDetailViewer Control

o Enable the field CustNum, when adding a new record only.

 Show the Images in the Lookup Browser.

©2011 Consultingwerk Ltd. – all right reserved 148

Disable the field RepName in the CustomerDetailViewer Control

Because you select the SalesRep with your new Lookup Control when adding or updating customer

records the field RepName does not need to be active. To disable it permanently do the following:

 Select the field RepName.

 Set Property Enabled to False.

Show the Images in the Lookup Browser

Last not least you want to bring the small images to the Lookup Browser.

What you need is an event handler for the InitializeLookupBrowserLayout event of the LookupControl.

In this Method you set the Label of the Column to “Image” and the Style of the GridColumn to

“ColumnStyle:Image” which enables the Browser to show images in that Column. The browse of

the lookup dialog is based on the Infragistics UltraGrid. The UltraGrid will handle the content of BLOB

fields in the Business Entity as Images when you set the ColumnStyle to “Image”.

 Add the highlighted code to the constructor of customerDetailViewerControl.cls :

 Add a new method as an event handler for the InitializeLookupBrowserLayout Event

 Write the following code:

CONSTRUCTOR PUBLIC CustomerDetailViewerControl ():

 SUPER().
 InitializeComponent().

 SalesRepLookup:InitializeLookupBrowserLayout:Subscribe
 (InitializeLookupBrowserLayoutHandler).

 SetControlEnabled
 (THIS-OBJECT: customerBindingSource_eCustomer_Custnum,
 Consultingwerk.SmartComponents.Enum.ControlEnabledEnum:Add).

 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.

END CONSTRUCTOR.

©2011 Consultingwerk Ltd. – all right reserved 149

 Save and test your application.

METHOD PRIVATE VOID InitializeLookupBrowserLayoutHandler(Sender AS
System.Object, e AS Consultingwerk.SmartComponents.Base.
InitializeLookupBrowserLayoutEventArgs):

e:Grid:DisplayLayout:Bands[0]:Columns["SmallImage"]:Header:Caption =
"Image".

e:Grid:DisplayLayout:Bands[0]:Columns["SmallImage"]:Style =
Infragistics.Win.UltraWinGrid.ColumnStyle:Image.

END METHOD.

©2011 Consultingwerk Ltd. – all right reserved 150

The result should look like this:

 Congratulation! You successfully added a Lookup to your sample application. The

construction part of our tutorial is finished now.

©2011 Consultingwerk Ltd. – all right reserved 151

Code Review

Overview

In this section we will take a closer look at the source code that has been generated for you by the

Business Entity Designer. By default, Business Entity Designer generates separate include files

for all Temp-Table s and the ProDataSet contained in a Business Entity component diagram.

By default the file names follow these conventions:

 eTableName.i for the Temp-Table includes

 dsEntityName.i for the ProDataSet includes

 The advantage of generating includes files for each single component is that you can reuse the

components in several Business Entities or ProDataSets.

Each Temp-Table contains two optional preprocessor directives:

 {&ACCESS}

 {&REFERENCE-ONLY}.

For more information please refer to the chapter Preprocessors in use.

Additionally there is a before-table eTableNameBefore defined for every Temp-Table .You need to

use the before-table when you plan to make changes to the records of the Temp-Table in a

ProDataSet. They are companion Temp-Tables to the after-table which is the Temp-Table you are

typically working with and which holds the data. The contents of the before-table are managed

automatically by the OpenEdge AVM when the TRACKING-CHANGES attribute is set to true which

will be done by the SmartComponent Library on the frontend. A before-table holds versions of the

records before modification (create, update, delete) were made to the returned records. When data is

saved to the database the SAVE-ROW-CHANGES method uses the before-table for optimistic locking

techniques. The Data Access object is dependent on the before-table for knowing which records have

been changed by the user.

©2011 Consultingwerk Ltd. – all right reserved 152

Temp-Table: eCustomer.i

 Definition of the Temp-Table eCustomer and all appropriate fields and indexes (excerpt)

Temp-Table: eSalesrep.i

 Definition of the Temp-Table eSalesrep and all appropriate fields and indexes

ProDataSet: dsCustomer.i

DEFINE {&ACCESS} TEMP-TABLE eCustomer NO-UNDO {&REFERENCE-ONLY} BEFORE-
TABLE eCustomerBefore

FIELD CustNum AS INTEGER FORMAT ">>>>9":U INIT "0":U LABEL "Cust Num"
FIELD Country AS CHARACTER FORMAT "x(20)":U INIT "USA":U LABEL "Country"

INDEX Comments AS WORD-INDEX Comments ASCENDING
INDEX CountryPost Country ASCENDING PostalCode ASCENDING
(…)
.

DEFINE {&ACCESS} TEMP-TABLE eSalesrep NO-UNDO {&REFERENCE-ONLY} BEFORE-
TABLE eSalesrepBefore

FIELD SalesRep AS CHARACTER FORMAT "x(4)":U LABEL "Sales Rep"
FIELD RepName AS CHARACTER FORMAT "x(30)":U LABEL "Rep Name"
FIELD Region AS CHARACTER FORMAT "x(8)":U LABEL "Region"
FIELD MonthQuota AS INTEGER FORMAT "->,>>>,>>9":U INIT "0":U LABEL
"Month Quota"

INDEX SalesRep AS UNIQUE PRIMARY SalesRep ASCENDING.

&SCOPED-DEFINE ACCESS {&ACCESS}
&SCOPED-DEFINE REFERENCE-ONLY {&REFERENCE-ONLY}

{ MySchema/eCustomer.i }
{ MySchema/eSalesrep.i }

DEFINE {&ACCESS} DATASET dsCustomer {&REFERENCE-ONLY} FOR eCustomer,
eSalesrep
 DATA-RELATION eCustomerRelation FOR eCustomer, eSalesrep
 RELATION-FIELDS (SalesRep,SalesRep).

©2011 Consultingwerk Ltd. – all right reserved 153

 Definition of the preprocessor directives

 References to the Temp-Table include files

 Definition of the ProDataSet dsCustomer, Data-Relation eCustomerRelation and Relation-

Fields (SalesRep,SalesRep)

 The ProDataset include file passes the values of the ACCESS and REFERENCE-ONLY

preprocessor directives to the contained Temp-Table include files. To avoid complicated passing as

include file parameters here the values are replicated as SCOPED-DEFINEs

©2011 Consultingwerk Ltd. – all right reserved 154

Business Entity: CustomerBusinessEntity.cls

 Definition of the class CustomerBusinessEntity

 Reference to the ProDataSet include file dsCustomer.i

 Definition of the DataAccess Object

By default the OERA implementation starts a Business Entity the first time when it is used during

runtime or design time. The CustomerBusinessEntity class inherits from a BusinessEntity base

(parent) class and is the owner and creator of the dataset dsCustomer.

 Unless you modify the Service Interface procedures located in the OERA/support folder or the

Consultingwerk.OERA.ServiceInterface class the Business Entities will remain in the memory of the

client or AppServer process until it terminates. The Service Interface has methods to shut down

Business Entities. The strategies for using this functionality highly depends on your application.

The Constructor passes the dataset handle to the BusinessEntity base class where it is validated and

verified to make sure that the Business Entity always uses a ProDataset.

Subsequently the name of the DataAccess Object CustomerDataAccess is defined. This Data

Access object is used whenever the Business Entity needs to read and write data to or from the

database.

CLASS MyBusinessEntities.CustomerBusinessEntity INHERITS BusinessEntity:

{ MySchema/dsCustomer.i }

CONSTRUCTOR PUBLIC CustomerBusinessEntity ():
 SUPER (DATASET dsCustomer:HANDLE).
 THIS-OBJECT:DataAccessName = "MyBusinessEntities.CustomerDataAccess":U
END CONSTRUCTOR.
(…)

©2011 Consultingwerk Ltd. – all right reserved 155

There are two void messages defined in the CustomerBusinessEntity.cls file, ReceiveData() and

ValidateDatat(). Both methods are defined as abstract in the base class, so the must be created here

in the class file of the Business Entity.

The ReceiveData() method provides a hook to modify data in the ProDataSet after all read and

update operations. It is invoked during the FetchData() and SaveChanges() process.

The ValidateData() method provides a hook for high level data validation before all update

operations happen in the Data Access Object. It is invoked during the SaveChanges() process. In

case of an ERROR in the ProDataSet the update operation is cancelled before writing the data back

to the database.

METHOD OVERRIDE PUBLIC VOID ReceiveData ():

/*--

Purpose: Provides a hook to modify data in the ProDataset after Read and
update operations (i.e. population of aggregated values)

Notes: Invoked during FetchData () and SaveChanges ()

--*

END METHOD.

METHOD OVERRIDE PUBLIC VOID ValidateData ():

/*---

Purpose: Provides a hook for high level data validation before Update
operations

Notes: Invoked during SaveChanges (). When the ERROR flag of the
ProDataset is set, the Update operation will be cancelled before writing
back the data to the database using the DataAccess object

---*/

END METHOD.

©2011 Consultingwerk Ltd. – all right reserved 156

Data Access Object: CustomerDataAccess.cls

The Data Access Object is used by the Business Entity whenever data needs to be read from or

written to the database. According to the OERA model the Data Access Object is the only object that

is aware of the existence of database tables.

 This is the ideal approach. However in the real world it might be o.k. to violate this concept

when you are aware of the consequences.

CLASS MyBusinessEntities.CustomerDataAccess INHERITS DataAccess:

{ MySchema/dsCustomer.i &ACCESS="PRIVATE" &REFERENCE-ONLY="REFERENCE-
ONLY"}

DEFINE PRIVATE DATA-SOURCE src_Customer FOR Customer .
DEFINE PRIVATE DATA-SOURCE src_Salesrep FOR Salesrep .
(…)

CONSTRUCTOR PUBLIC CustomerDataAccess (phDataset AS HANDLE):
 SUPER (INPUT phDataset).
 BindDataset (DATASET-HANDLE phDataset BIND).
END CONSTRUCTOR.
(…)

METHOD OVERRIDE PROTECTED VOID AttachDataSources ():
 Consultingwerk.Util.DatasetHelper:SetTrackingChanges (DATASET
 dsCustomer:HANDLE, FALSE) .

 BUFFER eCustomer:ATTACH-DATA-SOURCE (DATA-SOURCE src_Customer:HANDLE,
 "CustNum,Customer.CustNum,Country,Customer.Country,
 Name,Customer.Name…”).
 BUFFER eSalesrep:ATTACH-DATA-SOURCE (DATA-SOURCE src_Salesrep:HANDLE,
 "SalesRep,Salesrep.SalesRep,RepName,Salesrep.RepName,
 Region,Salesrep.Region,MonthQuota,Salesrep.MonthQuota") .
END METHOD.
(…)

METHOD PRIVATE VOID BindDataset (DATASET dsCustomer BIND):
 /* NOOP */
END METHOD.

(…)

METHOD OVERRIDE PROTECTED VOID DetachDataSources ():
 Consultingwerk.Util.DatasetHelper:SetTrackingChanges
 (DATASETdsCustomer:HANDLE, FALSE) .

 BUFFER eCustomer:DETACH-DATA-SOURCE () .
 BUFFER eSalesrep:DETACH-DATA-SOURCE () .
END METHOD.

©2011 Consultingwerk Ltd. – all right reserved 157

The CustomerDataAccess class is derived from the Consultingwerk.OERA.DataAccess class and

manages database access for FILL and SAVE processes of the ProDataSet. For that reason all

necessary data-sources are defined, attached and detached in this class: src_Customer and

src_Salesrep.

Please note the appropriate methods AttachDataSources() and DetachDataSources()!

The reference to the dataset include file dsCustomer.i is set with ACCESS-Mode = PRIVATE and

REFERENCE-ONLY flag, because the owner of the dataset is the CustomerBusinessEntity class.

The call of the BindDataSet() method binds the dataset to the ProDataSet instance of the

BusinessEntity class, allowing static access to all of its Temp-Table s.

This will result in static access to the same ProDataset instance both in the Business Entity class

(CustomerBusinessEntity) and the Data Access class (CustomerDataAccess). The BindDataSet()

method does not require any code. It’s executed only once when the Data Access object is started.

For details on passing ProDatasets with the BIND option we recommend reading the relevant

chapters in the ABL documentation.

The DefineReadEvents() method is a placeholder method to define callback events for a

ProDataSet. It is defined as abstract in the base class and is called during the read process to

activate the callback procedures.

METHOD OVERRIDE PROTECTED VOID DefineReadEvents ():

/*--

Purpose: TO-DO: Subscribe to ProDataset Event Handlers using SET-
CALLBACK as needed

Notes: Overrides ABSTRACT method in Consultingwerk.OERA.DataAccess,
Invoked in FetchData

---*/

©2011 Consultingwerk Ltd. – all right reserved 158

The SourceColumn() method is called during the read process and translates the Temp-Table field

names of the query string returned by the client to the database field names. As a developer you only

interfere here when you use different field names in the ProDataSet and the database or when fields

in a joined Data-Source are ambiguous.

The SourceDefaultQuery() method returns the base query string used to retrieve data for the Temp-

Table s. As a developer you can interfere, to set a filter by company in the DataAccess object.

METHOD OVERRIDE PUBLIC CHARACTER SourceColumn (pcTable AS CHARACTER,

pcColumn AS CHARACTER):

/*--

Purpose: Returns the database field name matching a Temp-Table field
name contained in a consumers query string (query string vs. Temp-Table
definition)

Notes: Call-back used by Consultingwerk.OERA.Query.DSQueryString (part
of DataAccess:FetchData () query preparation

TO-DO: Provide code for alternative mapping

---*/

METHOD OVERRIDE PUBLIC CHARACTER SourceDefaultQuery (pcTable AS

CHARACTER):

/*--

Purpose: Returns the base query string used to retrieve data for the
temp tables. This query string will be appended by the query provided by
the consumer (FetchDataRequest object).

Notes: Call-back used by Consultingwerk.OERA.Query.DSQueryString (part
of DataAccess:FetchData () query preparation

TO-DO: Provide code to return the DATA-SOURCE root query string

---*/

©2011 Consultingwerk Ltd. – all right reserved 159

Dataset Controller Object: CustomerSalesrepDatasetController.cls

The DatasetController defines a static ProDataset with the same structure (using the same include

files that define the schema) as the Business Entity dataset (procedural or object-oriented). Because

of the static schema definition and a centrally accessible location the DatasetController simplifies

writing (client side) logic working on the data managed by the SmartBusinessEntityAdapter (or

derived types).

This development strategy is closely related to common MVC / MVP design patterns. It simplifies the

separation of the actual UI logic from client side business logic and may also be used in Business

Logic on the AppServer, referenced by the actual Business Entity (as long as developers does not

access functionality like .NET classes that are not available on the AppServer).

Using a DatasetController with SmartBusinessEntityAdapter and

SmartDatasetChildAdapter components

There are two ways to associate a DatasetController with a SmartBusinessEntityAdapter:

The standard way to associate a DatasetController with a SmartBusinessEntityAdapter is to use the

property sheet of the SmartBusinessEntityAdapter instance on a Form. The

SmartBusinessEntityAdapter has a property called DatasetControllerType where a developer should

enter the class name of the DatasetController for the used Business Entity. The class name entered

in the property sheet will be validated immediately.

An alternative way of associating a DatasetController with a SmartBusinessEntityAdapter would be to

assign a reference of an instance of a DatasetController to the property named DatasetController of

the SmartBusinessEntityAdapter instance. This needs to be done before the first time RetrieveData()

or similar methods have been called that might require that the SmartBusinessEntityAdapter is

required to get a dataset instance.

CLASS MyBusinessEntities.CustomerDatasetController IMPLEMENTS
IDatasetController:

{ MySchema/dsCustomer.i }
(…)

CONSTRUCTOR PUBLIC CustomerDatasetController ():
 SUPER ().
 THIS-OBJECT:DatasetHandle = DATASET dsCustomer:HANDLE.
END CONSTRUCTOR.

©2011 Consultingwerk Ltd. – all right reserved 160

http://wiki.dynamics4.net/D4wiki/AppServer
http://wiki.dynamics4.net/D4wiki/AppServer

The property DatasetController can in any case be used to get a reference to the current

DatasetController instance associated with a SmartBusinessEntityAdapter. When using the

DatasetControllerType property in the property grid the SmartBusinessEntityAdapter will dynamically

create an instance of that type and assign the reference to the DatasetController property.

In any case the SmartBusinessEntityAdapter will “introduce” himself to the DatasetController using

the RegisterConsumer method of the IDatasetController interface. This method needs to be

implemented in the DatasetController and might be used to register to events of the

SmartBusinessEntityAdapter class.

A SmartDatasetChildAdapter will - like a SmartBusinessEntityAdapter - register with the

DatasetController when it’s direct or indirect SmartDataSource is a SmartBusinessEntityAdapter that

is working together with a DatasetController. The SmartDatasetChildAdapter will work on buffers on

the static defined ProDataset provided by the DatasetController. A SmartDatasetChildAdapter is not

able to independently create an instance of a DatasetController. From an architectural point of view

there is no need for that. The SmartDatasetChildAdapter only creates another view on the data

managed by the SmartBusinessEntityAdapter. The SmartDatasetChildAdapter is navigating on the

same data as the SmartBusinessEntityAdapter and will always use the same ProDataset instance as

its direct or indirect SmartDataSource that is a SmartBusinessEntityAdapter.

The method DeregisterConsumer of the interface IDatasetController will be called by both types of the

SmartDataAdapters when they are being destroyed.

Further information on the DatasetController can be found at:

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/DevelopersReference/DatasetController

©2011 Consultingwerk Ltd. – all right reserved 161

http://wiki.dynamics4.net/D4wiki/SmartComponentLibrary/DevelopersReference/DatasetController

Preprocessor in use

Each Temp-Table and ProDataSet include file typically contain two preprocessor directives

{&ACCESS} and {&REFERENCE-ONLY}.

{&ACCESS}:

Sets the access mode for the Temp-Table (PRIVATE or PROTECED) if needed. When it’s empty it is

ignored, meaning that the ABL will default to PRIVATE. In this way you can use the same include files

for object oriented and procedural applications.

{&REFERENCE-ONLY}:

When you pass a ProDataSet by reference, the called routine’s ProDataSet definition is bound to the

calling routine’s ProDataSet.

When a Temp-Table or ProDataset is defined REFERENCE-ONLY the compiler will be able to

validate access to fields and tables during compile time and allow static access. However the object

(or procedure) does not create it’s own instance of the data-structure. To work with the data you need

to receive a Temp-Table or ProDataset from another object or procedure either BY-REFERENCE (for

the duration of the call to a single method or internal method) or BIND (until the target object or

persistent procedure is destroyed).

The primary advantage of defining Temp-Tables or ProDatasets in objects receiving a data-structure

is the reduction of resource consumption. A Temp-Table or ProDataset that is defined without the

REFERENCE-ONLY option will consume more memory and eventually also cause the client process

and/or the AppServer to write to the dbi file (known as Temp-Table Dataset). Even though Progress

Software has announced some optimization in OpenEdge 11 this issue is known in the community as

the “too many Temp-Table issue (TMTT)”.

©2011 Consultingwerk Ltd. – all right reserved 162

Using Images for Browser Columns and Combo-
Boxes
TBD: Intro

Einer Browserspalte (UltraGrid) zuweisen

Einer ComboBox zuweisen:

Hierbei wird der ComboBox eine Kopie zugewiesen – sonst gibt es offenbar Fehlermeldungen wenn

die selbe ValueList gleichzeitig in Grid und Combo verwendet wird. Prinzipiell würde es auch nicht

schaden, beim Grid ebenfalls eine Kopie (Clone() Methode) zu verwenden!

Die ValueLists Klasse enthält statische Referenzen auf ValueLists, die am Client vorhanden sind –

könnten auch einmalig dynamisch aus der DB generiert werden.

THIS-OBJECT:smartDataBrowser1:DisplayLayout:Bands[0]:Columns["Flags"]:ValueList
= Consultingwerk.SmartComponentsDemo.CustomerExplorer.ValueLists:CustomerFlags.

THIS-
OBJECT:smartDataBrowser1:DisplayLayout:Bands[0]:Columns["OrderStatus"]:ValueList
=
 Consultingwerk.SmartComponentsDemo.CustomerExplorer.ValueLists:Order
Status .

THIS-
OBJECT:smartDataBrowser3:DisplayLayout:Bands[0]:Columns["OrderLineStatus"]:Value
List =
Consultingwerk.SmartComponentsDemo.CustomerExplorer.ValueLists:OrderLineStatus .

THIS-OBJECT:ultraComboEditor1:ValueList = CAST
(Consultingwerk.SmartComponentsDemo.CustomerExplorer.ValueLists:OrderSta
tus:Clone(),Infragistics.Win.ValueList)

©2011 Consultingwerk Ltd. – all right reserved 163

Appendix

Start the Demo Application

The CustomerExplorer_Demo deployment comes together with a demo application for test and

educational purposes called the CustomerExplorer demo. The demo files are stored in the

Consultingwerk/SmartComponentDemo/CustomerExplorer folder for the frontend code and the

Consultingwerk/SmartComponentsDemo/OERA for the backend code. To start the demo application,

expand your project folder as shown below and open the start.p procedure.

A login window appears.

 The username is prefilled with your Windows user name; leave the password blank (it is not

validated) and click Login.

©2011 Consultingwerk Ltd. – all right reserved 164

The CustomerExplorer demo opens and shows the main menu.

 Select Customer maintenance > Overview.

The Customer Overview appears.

©2011 Consultingwerk Ltd. – all right reserved 165

 Double-click a customer record.

The Customer Detail dialog opens.

 To see related order data for the customer record switch to the Order header tab.

©2011 Consultingwerk Ltd. – all right reserved 166

The result screen should look like this.

For every order record you can show order line information as well.

 To see the order lines switch to tab Order lines.

The result should look like this:

There is more to discover in the CustomerExplorer demo. Feel free!

©2011 Consultingwerk Ltd. – all right reserved 167

Create the sports2000 database

The CustomerExplorer sample application and the labs in this tutorial are based on an enhanced

version of Progress Software’s sports2000 database. This dataset is enhanced with some additional

fields and tables, e.g. for storing images of the salesreps. You will need to setup and connect this

database for running the CustomerExplorer application and the labs in this tutorial.

If not done so far download the file CustomerExplorer_DB_yyyymmdd_src.zip from the download

section of the Consultingwerk Developers Corner and copy it to a directory of your choice.

 Create a folder DemoAppDB in your OpenEdge\WRK directory and unzip the file.

The structure description file (.st) is required to create a new void database, the data definition file

(.df) is needed to load the logical schema and the dumpfiles (.d) contain the data.

Note that there are some binary files as well (.blb), that contain the images used in the demo

application.

©2011 Consultingwerk Ltd. – all right reserved 168

Create a void empty Database using the sports2000.st file

To create the sports2000 database you use the proenv shell from Progress Software. It’s a command

line shell that sets up the path to the OpenEdge RDBMS executables and by default switches to the

working directory /wrk (or whatever was chosen during the installation of OpenEdge on your

computer). It enables you to invoke many database administration utilities and commands.

 To open proenv choose Start > All Programs > OpenEdge > proenv.

 When using proenv, you should be mindful of its working directory because it is where your

database files are stored by default. You can change the proenv working directory to any directory of

your choice. To do so, use the CD command.

 Change directory to C:\OpenEdge\WRK\DemoAppDB.

 Create a new, empty sports2000 database using the PRODB command.

The PRODB uses the sports2000.st file automatically when it is saved in the same directory where

the database resides

prodb sports2000 empty

©2011 Consultingwerk Ltd. – all right reserved 169

The following files have been added to your WRK\DemoAppDB directory.

©2011 Consultingwerk Ltd. – all right reserved 170

Loading data definitions

Once you have created the target database, you can load the dump files into it. Load the data

definition file sports2000.df into the database first.

You can use the Data Administration tool for load operations.

 To open Data Administration choose Start > All Programs > OpenEdge > Data Administration.

The Data Administration tool opens.

 From the menu choose Database > connect and connect to your sports2000.db database by

selecting the sports2000.db file and click OK.

 From the menu choose Admin > Load Data and Definition > Data Definitions (.df file).
 The Load Data Definitions dialog box opens and shows WRK\DemoAppDB\sports2000.df as the

default input file because it is stored in the same directory where the database resides.

©2011 Consultingwerk Ltd. – all right reserved 171

 Click OK to load the data definitions of sports2000.df.

 Click OK on the Information box to return to the main Data Administration interface.

©2011 Consultingwerk Ltd. – all right reserved 172

Loading table contents

After you have loaded the data definitions of all tables into the target database, you can load the table

contents.

 Choose Admin > Load Data and Definitions > Table Contents (.d files).

The Select Tables dialog box opens, showing an alphabetical list of all the tables in the database.

 Click button Select Some to select all tables and click OK.

 Click OK to close the Select Tables dialog box.

The Load Data Contents for All Tables dialog box opens. By default, the input directory is empty.

 Click Data Dir.. to change the input directory to your WRK\DemoAppDB directory.

 Click Lob Dir.. to change the input directory to your WRK\DemoAppDB directory.

©2011 Consultingwerk Ltd. – all right reserved 173

 There are several Binary Large Objects (BLOBs) in the WRK\DemoAppDB directory that are

important for the CustomerExplorer demo application. Make sure that Include LOB toggle box is

checked.

 Click OK to load the data.

 When the load is completed click OK to return to the main interface.

©2011 Consultingwerk Ltd. – all right reserved 174

Loading sequence definitions and values

After you have loaded the table contents into the target database, you can load the current sequence

definition and values for the database.

The sequence definitions have been loaded with the data definition so you just need to load the

sequence current values.

 To load the sequence values choose Admin > Load Data and Definitions > Sequence Current
Values from the menu.

The Load Sequence Current Values dialog box opens showing a _seqvals.d as the default input file.

 Change to your WRK\DemoAppDB directory and select the _seqvals.d file.

 Click OK to load the current sequence values.

 Click OK to return to the main interface.

 Choose Database > Exit to close the Data Administration tool.

 Congratulation! You successfully finished the creation of the sports2000 database.

©2011 Consultingwerk Ltd. – all right reserved 175

OERA vs. OERA

The SmartComponent Library deployment contains two folders named OERA. Even though this may

be confusing at first sight, this is a design decision made that we do not intend to change.

1) The first OERA folder is the folder Consultingwerk\OERA. This folder contains the class

based OpenEdge Reference Architecture compliant backend implementation. This folder

contains the classes contained in the Consultingwerk.OERA package and this folder must

remain in this location.

2) The second OERA folder is the folder OERA under the deployment root folder. This folder

contains the service interface support procedures. These are the procedures invoked from

(GUI) clients for accessing the backend through AppServer calls. The location of this folder is

variable and customers may move this to another folder (even to the Consultingwerk\OERA

folder as there are no ambiguous files in the two folders). One reason to move this folder to a

different location may be security related. Through the use of the SESSION:EXPORT method

(see the SESSION system handle in the OpenEdge documentation) customers can restrict

the access from clients to the AppServer only to specific procedures or folders. Thus it may

be desired to merge the contents of this folder with another folder already exposed to clients

using that way. The OERASI setting in the Consultingwerk/products.i file can be changed to

point to the correct location of the service interface support procedures:

/* default path to OERA Service Interface */

&GLOBAL-DEFINE OERASI OERA/support

©2011 Consultingwerk Ltd. – all right reserved 176

Changing Run Configurations

You can change the Run configuration of the OpenEdge Architect to list the start procedures for the

SmartComponent Library tools in the Run as… drop down menu, e.g. BusinessEntityDesigner and

BusinessEntityTester.

The result should look like this:

 With the target start.p procedure (Consultingwerk\BusinessEntityDesigner\UI) selected in the

OpenEdge Architect editor pull down the Run as… menu and select Run Configurations…

The Run Configurations dialog opens.

 Press the New Button in the upper left corner to create a new Run Configuration

©2011 Consultingwerk Ltd. – all right reserved 177

 Type in the name of the procedure you want to define as a startup procedure, in this case

BusinessEntityDesigner (no blanks)

 Check the Startup program

 Click Button Apply

 Change to folder Common and select the Run checkbox to Display in favorites menu.

©2011 Consultingwerk Ltd. – all right reserved 178

 Select Close to close the dialog.

The new procedure is now shown in the start menu of the Run as… menu of the OpenEdge Architect.

 Repeat the steps to define the startup procedure for the Business Entity Tester for the Run

menu as well.

The startup procedure for the Business Entity Tester you find here:

C:\OpenEdge\WRK\WS_CustomerExplorer\ABL_Demo\Consultingwerk\SmartComponents\Tools\OE

RABusinessEntityTester

©2011 Consultingwerk Ltd. – all right reserved 179

The result should look like this:

©2011 Consultingwerk Ltd. – all right reserved 180

Customizing the Default Ribbon Configuration

The SmartToolbarController provides a designer verb called “Default Ribbon Configuration”. This
tool loads a standard ribbon layout containing the TableIO, Navigation and Transaction tools into the
design time instance of the SmartToolbarController. Developers can use this layout as a foundation
for Ribbons in screens they are working on.

A developer team may demand to modify this Ribbon design to match their own standards.
Developer teams may also demand to add different default Ribbon layouts to the designer context
menu (for master data screens, for transactional screens, …).

The Default Ribbon Configuration functionality loads a Ribbon layout stored in an Infragistics
default XML file. The recommended approach to customize the Ribbon is to manipulate the Ribbon
in a sample/mockup screen and save the layout to an XML file from the Visual Designer:

©2011 Consultingwerk Ltd. – all right reserved 181

Select a file/folder that will be accessible by all developers in your team.

To use your design from the Visual Designer context menu as the new default Ribbon, you should
override the method “LoadDefaultRibbonConfiguration” of the SmartToolbarController class in your
own Toolbar Controller custom base class (inheriting from SmartToolbarController).

©2011 Consultingwerk Ltd. – all right reserved 182

Add code similar to the code from the original method and adjust the file name and path of your
Ribbon XML design:

/*--
 Purpose: Loads a default Ribbon Design
 Notes:
--*/
METHOD PROTECTED VOID LoadDefaultRibbonConfiguration ():

 IF NOT THIS-OBJECT:DesignTime THEN
 RETURN .

 FILE-INFO:FILE-NAME =
"Consultingwerk/SmartComponents/Resources/RibbonTemplate.xml":U .

 IF FILE-INFO:FULL-PATHNAME > "":U THEN
 THIS-OBJECT:LoadFromXml(FILE-INFO:FULL-PATHNAME) .
 ELSE
 Consultingwerk.Util.MessageFormHelper:ShowMessage
 ('The file
"Consultingwerk/SmartComponents/Resources/RibbonTemplate.xml" cannot be found.',
 "SmartToolbarController",
 "Make sure it is available on your propath!",
 MessageFormImages:ImageWarning) .

END METHOD.

You can also add additional tools to the context menu providing quick access to different ribbon
designs. Please refer to the SetDesignerProperties and OnVerbClicked methods in the
SmartToolbarController for samples.

©2011 Consultingwerk Ltd. – all right reserved 183

©2011 Consultingwerk Ltd. – all right reserved 184

	About this Tutorial
	Prerequisites
	Signs
	Introduction
	About the SmartComponent Library
	Why it is so smart

	Setting up the SmartComponent Library environment
	Download the SmartComponent Library
	Download database files
	Create the sports2000 database
	Create a Workspace and Project directory
	Import the project into the OpenEdge Architect
	Project Structure
	OERA vs. OERA

	Setting up Project Properties
	Startup Parameter
	Setting the PROPATH
	Setting up connections to the customized sports2000 database
	Connect to the sports2000 database in the OpenEdge Architect
	Optional: Specify whether to define a SQL connection.
	Define Database Server Configuration

	Compile the source code of the SmartComponent Library
	Optional: Activate Auto-Refresh Option

	Developing Business Entities
	Introduction
	Introducing the Business Entity Designer
	Start the Business Entity Designer

	Create a new Business Entity for Customer and Salesrep
	Summary for CustomerBusinessEntity
	Optional: Change Temp-Table settings
	Save the Business Entity
	Create the required Temp-Table
	Temp-Table Names
	Define a Relation
	Generate source code
	Save the Business Entity Diagram File
	(Re)open a Business Entity Diagram File

	Business Entity Tester
	Starting the Business Entity Tester tool from Business Entity Designer

	Create a new Business Entity for Order-Customer-OrderLine-Item
	Summary for OrderBusinessEntity

	Building the sample application
	Customer Overview and Customer Detail
	1. Create a new Form Customer Overwiew
	2. Add a SmartToolbarController
	Set configurations for the SmartToolbarController

	3. Add a SmartBusinessEntity Adapter
	4. Add a SmartBusinessEntityBindingSource
	5. Add a SmartDataBrowser
	6. Define Links
	Define a Data Link to display data in the SmartDataBrowser
	Define a Navigation Link to navigate data using the buttons in the toolbar
	Write the required initialization Code

	7. Create a new Form for Customer Details
	8. Insert a Tab Control to a Form
	9. Create a SmartViewerControl CustomerDetailViewer
	Duplicate the Binding Source
	Add Fields to the User Control

	10. Insert a User Control in a Form
	11. Specify Links for Form Customer Detail
	Define a Table I/O Link
	Define a Data Link to the CustomerAdapter in Form Customer Overview

	12. Open the Form Customer Detail from Customer Overview
	Add all necessary code for the double-click event

	II. Order and Order Lines
	1. Create new Tabs for the Tab Control
	2. Add the OrderAdapter and OrderBindingSource components
	3. Add a SmartDataBrowser for Order information
	4. Customize code for Order Browser
	5. Create a User Control OrderDetailViewer
	Insert the User Control into the Form

	6. Add Navigation Functionality
	Navigating the Customer records
	Navigating the Order records

	7. Add the OrderLineAdapter and OrderLineBindingSource
	8. Add a SmartDataBrowser for Order Line information
	9. Create a User Control OrderLineDetailViewer
	Insert the User Control to the Form

	10. Add Navigation Functionality
	Code for Order Lines

	Add a Lookup for Salesrep
	Create a new Business Entity for SalesRep data
	Summary for SalesRepBusinessEntity

	Add a SmartBusinessEntityLookup Control to a Form
	Select the SalesRepBusinessEntity and the tables to be used by the Lookup
	SmartBusinessEntityLookup Designer
	Add some more functionality
	Disable the field RepName in the CustomerDetailViewer Control
	Show the Images in the Lookup Browser

	Code Review
	Overview
	Temp-Table: eCustomer.i
	Temp-Table: eSalesrep.i
	ProDataSet: dsCustomer.i
	Business Entity: CustomerBusinessEntity.cls
	Data Access Object: CustomerDataAccess.cls
	Dataset Controller Object: CustomerSalesrepDatasetController.cls
	Using a DatasetController with SmartBusinessEntityAdapter and SmartDatasetChildAdapter components

	Preprocessor in use

	Using Images for Browser Columns and Combo-Boxes
	Einer Browserspalte (UltraGrid) zuweisen
	Einer ComboBox zuweisen:

	Appendix
	Start the Demo Application
	Create the sports2000 database
	Create a void empty Database using the sports2000.st file
	Loading data definitions
	Loading table contents
	Loading sequence definitions and values

	OERA vs. OERA
	Changing Run Configurations

	Customizing the Default Ribbon Configuration

