

Startup Manager Specification
OpenEdge Framework Technical Design Document

OpenEdge Application Architecture
Specification (OEAA)

Version 0.3

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page ii

Version 1.0

Spec
Team
Members

Sunil Belgaonkar sbelgaon@progress.com Progress

Shelley B. Chase schase@progress.com Progress

Marian Edu marian.edu@acorn.ro Acorn IT

Rom Elwell rome@issol.com

Innovative
Software
Solutions

Mike Fechner mike.fechner@consultingwerk.de Consultingwerk

Ganesh Iyer gaiyer@progress.com Progress

Peter Judge * pjudge@progress.com Progress

Tom Kincaid tkincaid@progress.com Progress

Christopher Longo chlongo@progress.com Progress

Paul Moberg paulmoberg@quickenloans.com Quicken Loans

Mark Opfer mopfer@dmsi.com DMSi

Simon L. Prinsloo* simon@vidisolve.com Vidisolve

Phani Sajja psajja@progress.com Progress

Kevin Schantz kws@qad.com QAD

Robin Smith* rosmith@progress.com Progress

* Denotes contributing author

mailto:sbelgaon@progress.com
mailto:schase@progress.com
mailto:marian.edu@acorn.ro
mailto:rome@issol.com
mailto:mike.fechner@consultingwerk.de
mailto:gaiyer@progress.com
mailto:pjudge@progress.com
mailto:tkincaid@progress.com
mailto:chlongo@progress.com
mailto:paulmoberg@quickenloans.com
mailto:mopfer@dmsi.com
mailto:simon@vidisolve.com
mailto:psajja@progress.com
mailto:kws@qad.com
mailto:rosmith@progress.com

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page iii

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 Purpose .. 1
1.2 Scope .. 1
1.3 Definitions, Acronyms and Abbreviations .. 2
1.4 Contents Overview .. 2

2 COMPONENT OVERVIEW ... 3

2.1 Component Description .. 3
2.2 Component Architecture .. 5
2.3 Component Package Definition ... 7
2.4 Component Property Data and Organization ... 7
2.5 Component Run-time Characteristics ... 7
2.6 Component Error Handling .. 8

COMPONENT INTERACTION WITH EXTERNAL SUB-SYSTEMS 9

3 COMPONENT INTERFACES AND CLASSES ... 10

3.1 Ccs.Common.IManager ... 10
3.2 Ccs.Common.IStartupManager .. 10
3.3 Ccs.Common.Application ... 11

4 GUIDELINES FOR FRAMEWORK CREATORS .. 14

5 GUIDELINES FOR APPLICATION DEVELOPERS .. 15

6 REFERENCES .. 16

DOCUMENT CONTROL ... 17

DOCUMENT HISTORY .. 17

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 1

1 Introduction

The Common Component Specification (CCS) project is designed to simplify the
development of modern business applications by defining the architecture and
components of a modern application development framework for the OpenEdge
platform. The CCS project identifies a set of specifications for the common
components needed in developing modern business applications. When these
components are built as part of a modernization framework, application developers
can concentrate more on the business logic of the application rather than on
infrastructure and integration.

The Startup Manager Specification OpenEdge Application Architecture Specification
(OEAA) version 0.3 builds on the CCS Specification: OpenEdge Application
Architecture and defines the Startup Manager API as Object-Oriented ABL.

The class and interfaces described in the document will form part of the OpenEdge
Application Architecture (OEAA) and provides a framework against which any
consumer of a CCS compliant framework or component can code, regardless of the
choice of the framework implementation. Implementers of a CCS compliant Startup
Manager must implement and use these components as described in this document.

Classes that form building blocks of a framework deliver standard behaviour, features
and functionality independent of any specific application requirements. Such a
framework should supply a stable and reliable set of services for the entire lifetime of
an ABL session. The CCS Specification recognizes the fact that a session may need
a bootstrap process in order to get a session to this stable state by initializing some
or all of the framework services. This process needs to be flexible enough to allow
the creation of custom architectures by combining services from various frameworks
and it also need to be robust enough to cope with the inherent unstable state of the
framework environment during this process. Booting a framework to a stable state is
the responsibility of the Startup Manager. (Chase, et al., 2016, p. 9)

1.1 Purpose

The purpose of this technical specification is to describe the API definitions, the
expected behaviour and other collateral needed to use (or implement) a CCS
compliant Startup Manager.

It will enable consumers of any CCS compliant Startup Manager to understand the
services, behaviour and requirements of a Startup Manager. Implementers of a CCS
compliant Startup Manager must use this as document as minimum requirements to
implement for the expected components.

1.2 Scope

The CCS Specification: OpenEdge Application Architecture Version 1 defines the
components of an OEAA-compliant architecture, the responsibilities of each
component, and the communication protocol between components.

This specification defines the API, expected behaviour and other collateral needed to
successfully use (or implement) a CCS compliant Startup Manager.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 2

Any references to and examples of common components as defined in CCS
Specification: OpenEdge Application Architecture Version 1, other than the Startup
Manager itself, will be for illustrative purposes only and will not form part of this
specification beyond the minimum requirements imposed on those components in
order to accommodate their safe initialization by the Startup Manager.

As the managers are specialized services, the Service Manager Specification:
Technical design document (Judge, 2016) will take precedence, should this
specification ever be in conflict with it.

1.3 Definitions, Acronyms and Abbreviations

Business Service – Services specific to the purpose of the application.

CCS – Common Component Specification. (Chase, et al., 2016)

OEAA – OpenEdge Application Architecture. (Chase, et al., 2016)

OERA – OpenEdge Reference Architecture. (Ormerod, 2006)

Manager – Service specific to the Common Infrastructure. (Chase, et al., 2016)

Service – Self-contained unit of functionality

SOA – Service oriented architecture

1.4 Contents Overview

Section 1 is the introduction and includes a description of the project, applicable and
reference documents.

Section 2 provides the component’s overview.

Section 3 contains the context in which the component will be applied.

Section 4 describes the component’s design method, standards and conventions.

Section 5 contains the component’s component descriptions.

Section 6 includes the component’s revision history, outstanding issues, and action
items

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 3

2 Component Overview

2.1 Component Description

The Startup Manager is classified as a Required Component of the OEAA. (Chase,
et al., 2016, p. 8)

The Startup Manager is a Common Infrastructure Service of an application. As such,
it can potentially be used in all layers of the OpenEdge Reference Architecture
(OERA).

“Common Infrastructure services are non-domain specific related functions that
provide the common infrastructure support for a modern application. They comprise
of standard behaviour, features and functionality independent of any specific
application requirements.” (Ormerod, 2006, p. 3)

According to Ormerod (2006, p. 3), Common Infrastructure services, or the so-called
Managers in CCS terminology, are expected to be started with the ABL session and
will therefore always be available.

The CCS Specification: OpenEdge Application Architecture Version 1 requires the
following functionality of the Startup Manager: (Chase, et al., 2016, p. 9)

The Startup Manager MUST

 Prepare a set (zero or more) of Manager components, that are in a
predefined order. The names and order of these Manager components will
be provided by a set of configuration data. The choice of the configuration
data location is the responsibility of the Startup Manager implementer and
will be coded by an implementer. These data may come from one or more of
the following.

o a CCS component responsible for configuration (to be spec’d);

o a hard-coded list;

o a known file on disk;

o any other source of configuration data (an HTTP connection, a
database etc)

 Start and initialise that set of Manager components in order. Initialisation is
usually done via a call to an Initialize() method.

 Provide a reference to the started Managers via the getManager() method

 Set the values of relevant Managers on the Ccs.Common.Application class.

 The Startup Manager MAY use the Service Manager to start Manager
components but this is NOT required.

 The Startup Manager SHOULD recognise that there may be dependencies
that must be manually resolved in the Startup Manager.
During the boot process, a system is not in a well-known, pre-defined state
and there is no guarantee that any individual Manager component is
available at any given point in time. Managers from different implementations
may have different dependencies.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 4

2.1.1 Functional overlap with Service Manager

The Architecture spec states that

The Service Manager is responsible for instantiating all Business Services
and managing their life cycle. The Service Manager is used to instantiate
these objects or procedures and shut them down as appropriate based on a
life cycle configuration of the service. The Service Manager is the central
controller or factory that ensures that Business Services are initialized
consistently and not left consuming resources unnecessarily or started
multiple times. (Chase, et al., 2016, p. 13)

 There is some overlap between this and the Startup Manager’s responsibility in
running Manager components, since Manager components are specialised Services.
It is the choice of the implementer whether the Startup Manager uses the Service
Manager to instantiate a Manager if it chooses to.

A Service Manager implementation MUST take into account the fact that some
components are Managers and were started by the Startup Manager. It MUST NOT
attempt to instantiate/run these without reference to the Startup Manager, via the
getManager() method and/or the Ccs.Common.Application class. The authors
recognise that this requirement cannot be enforced in an interface and that the onus
for this falls on the Service Manager implementers.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 5

2.2 Component Architecture

2.2.1 Ccs.Common.IService

StartupManager implements the Ccs.Common.IService interface, as specified in
Service Manager Specification: Technical design document, (Judge, 2016).

2.2.2 Ccs.Common.IManager

This interface inherits from Ccs.Common.IService, but does not currently contribute
any new members.

It serves as a marker to indicate that a class is a common infrastructure service that
can be started and managed by the Startup Manager. Classes implementing this
interface are started by the Startup manager and, once session initialization has
completed, are always available, as described by the OERA.

The Startup Manager is the sole authoritative factory and repository of services
implementing this interface.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 6

Both the framework builder and the application programmer can add custom
extensions to the Common Infrastructure by implementing this interface and
configuring the Startup Manager to make it available.

2.2.3 Ccs.Common.IStartupManager

The CCS requires a pluggable model that allows for components from different
vendors to co-exist. (Chase, et al., 2016, p. 9)

This requires that the Startup Manager be implemented as a factory for all common
components.

It needs to use configuration data to identify and start the managers in a pre-defined
sequence in order to accommodate dependencies where possible.

As managers from different frameworks can be plugged into the same session,
dependencies between managers may vary. During the start-up phase, framework
implementers that rely on such dependencies may risk incompatibility with certain
configurations involving a mix of managers from different vendors.

Since the Startup Manager itself must be a pluggable component, the bootstrap
procedure will need to inject the Startup Manager of choice into the framework. The
implementation detail of the selected Startup Manager will determine if the procedure
should also invoke an initialization method and if it must assist with obtaining the
Startup Manager’s configuration or not, as deciding how and where to find the
configuration data is an implementation detail.

This interface defines the following method:

 getManager () return an IManager interface of the requested manager, if it is
configured.

2.2.4 Ccs.Common.Application

The injection requirement of the Startup Manager means that it cannot follow any
traditional singleton pattern. An alternative, well-known method is needed to locate it,
which in turn will grant access to all other managers.

This will be achieved by the CCS itself providing the Ccs.Common.Application class.

The class has a private constructor and cannot be instantiated.

The class provides the following static properties that need to be populated during
the bootstrap process:

 StartupManager: Ccs.Common.IStartupManager

 ServiceManager : Ccs.Common.IServiceManager

 SessionManager : Ccs.Common.ISessionManager

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 7

2.3 Component Package Definition

The Startup Manager class and interface will be a subset of the Ccs.Common
namespace, which will also contain all other interfaces referenced by the Startup
manager’s properties.

2.4 Component Property Data and Organization

The requirements of the CCS Specification: OpenEdge Application Architecture
Version 1 in terms of the naming conventions, storage organization and interaction
between components applies to the components defined in this specification.

2.5 Component Run-time Characteristics

The session Startup procedure will inject the Startup Manager of choice by creating it
and calling the initialize() method and, if required by the particular implementation,
supply the configuration data or assist with obtaining it.

The constructor of the Startup Manager:

1. Should not perform any other work, but rather defer it to the initialize() method.

The initialize() method of the Startup Manager:

1. May locate the Startup Manager configuration data or may require that it be
supplied as a parameter to an implementation specific overload.

2. Must either ensure that its configuration data provides proper implementations of
IServiceManager and ISessionManager or alternatively supply default values for
these when they are not configured.

3. Use the configuration data to locate and instantiate all the configured managers
in the correct sequence.

4. Once the manager has been instantiated, call the initialize() method on the
manager.

In general, managers should be singletons, loaded during bootstrap, and be available
at all time. (Chase, et al., 2016, p. 8) (Ormerod, 2006, p. 3)

Although the practice is discouraged, the Startup Manager must provide for situations
where an implementer chose to implement more than one manager’s interface in the
same object and not waist resource by launching an instance for each interface. For
example, if a particular object implements both IMessagingManager and
ILoggingManager, the reference of first one started during initialization must be re-
used by the second one.

The getManager() method will take a Progress.Lang.Class instance as input
parameter. The class must represent a type that is:

 An interface – IsInterface() = TRUE

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 8

 Derived from Ccs.Common.IManager – IsA(Ccs.Common.IManager) =
TRUE

The method will then locate the definition of this type in its configuration. If it is
defined and launched, it will return the instance of the implementing type. In all other
cases, an error must be thrown.

2.6 Component Error Handling

It is preferred that a fail fast philosophy be followed during initialization and that
errors are left to bubble up through the call stack to the session startup routine rather
than being intercepted.

Errors must have messages. Thus when the default constructor or the constructor
taking only a string is used to instantiate an AppError, it must be followed with a call
to the AddMessage() method before the error is thrown.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 9

Component Interaction with External Sub-systems

The Startup Manager act as the factory of the following common component services
and serves as the authoritative provider of references to any object implementing the
IManager interface, which includes, but is not limited to, the following objects:

 Ccs.Common.IServiceManager

 Ccs.Common.ISessionManager

 Ccs.Common.IContextManager

 Ccs.Common.IAnalyticsManager

 Ccs.Common.IAuthenticationManager

 Ccs.Common.IAuthorizationManager

 Ccs.Common.IConnectionManager

 Ccs.Common.ILoggingManager

 Ccs.Common.IMessagingManager

 Ccs.Common.IPropertyManager

 Ccs.Common.ITranslationManager

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 10

3 Component Interfaces and Classes

3.1 Ccs.Common.IManager

Inherits Ccs.Common.IService.

Flags a class as an OERA Common Infrastructure service, to be managed by the
StartupManager.

3.2 Ccs.Common.IStartupManager

Session bootstrap and factory of common components.

3.2.1 Public Instance methods

Name initialize() Inherited from Ccs.Common.IService

Description Initialize the StartupManager

Return Type Void

Parameters None

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Name getManager()

USING Ccs.Common.IService FROM PROPATH.

INTERFACE Ccs.Common.IManager INHERITS IService:

END INTERFACE.

USING Ccs.Common.IManager FROM PROPATH.
USING Ccs.Common.IServiceManager FROM PROPATH.
USING Ccs.Common.ISessionManager FROM PROPATH.

INTERFACE Ccs.Common.IStartupManager INHERITS IManager:

 /*--
 Purpose: Retrieve an instance of the specified IManager object.
 Notes: If a manager is not configured, no error should be raised, but if it is
 configured and fails to load, an exception must be raised.
 @param pServiceType The Progress.Lang.Class repersenting the required service.
 @return IManager implementation of the requested type, or ? if its not configured.
 --*/
 METHOD PUBLIC IManager getManager (pServiceType AS Progress.Lang.Class).

END INTERFACE.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 11

Description Locate the instance of the injected type representing a given
common infrastructure service.

Return Type Ccs.Common.IManager or Unknown

Parameters Input Progress.Lang.Class Interface type for which the
implementation is desired.

Exceptions Progress.Lang.AppError

3.3 Ccs.Common.Application

Provides a well-known point to find references to specific CCS Manager components.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 12

3.3.1 Public Constructors

 Default constructor

Description This constructor is private in order to prevent the creation of an
instance.

BLOCK-LEVEL ON ERROR UNDO, THROW.

USING Ccs.Common.IServiceManager FROM PROPATH.
USING Ccs.Common.ISessionManager FROM PROPATH.
USING Ccs.Common.IStartupManager FROM PROPATH.

CLASS Ccs.Common.Application FINAL:

 /*--
 Purpose: Provides access to the injected IStartupManager.
 Notes:
 --*/
 DEFINE STATIC PUBLIC PROPERTY StartupManager AS IStartupManager NO-UNDO GET. SET.

 /*--
 Purpose: Provides access to the injected IServiceManager.
 Notes:
 --*/
 DEFINE STATIC PUBLIC PROPERTY ServiceManager AS IServiceManager NO-UNDO GET. SET.

 /*--
 Purpose: Provides access to the injected ISessionManager.
 Notes:
 --*/
 DEFINE STATIC PUBLIC PROPERTY SessionManager AS ISessionManager NO-UNDO GET. SET.

 /*--
 Purpose: Version of the Common Component Specification implementation.
 Notes:
 --*/
 DEFINE STATIC PUBLIC PROPERTY Version AS CHARACTER NO-UNDO
 INITIAL '1.0.0':u
 GET.

 /*--
 Purpose: Prevent creation of instances.
 Notes:
 --*/
 CONSTRUCTOR PRIVATE Application ():
 SUPER ().
 END CONSTRUCTOR.

END CLASS.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 13

3.3.2 Public static properties

Name StartupManager

Description This property is the session wide gateway that is needed to get hold
of the injected Ccs.Common.IServiceManager instance, which in
turn, gives access to the instances of all other injected Mangers.

Type Ccs.Common.IStartupManager

Getter Public

Setter Public

Name ServiceManager

Description This property is the session wide gateway that is needed to get hold
of the injected Ccs.Common.IServiceManager instance, which in
turn, gives access to the instances of all other injected Mangers.

Type Ccs.Common.IServiceManager

Getter Public

Setter Public

Name SessionManager

Description This property is the session wide gateway that is needed to get hold
of the injected Ccs.Common.ISessionManager instance, which in
turn, gives access to the instances of all other injected Mangers.

Type Ccs.Common.ISessionManager

Getter Public

Setter Public

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 14

4 Guidelines for Framework Creators

It is the purpose of the StartupManager to manage the boot process by injecting the
desired managers in a given sequence. During instantiation, manager should not rely
on any other manager, but if it does, it must access it via the Startup Manager, as the
Service Manager will not be guaranteed to exist.

Keep in mind that the system is unstable during boot up, meaning that the exact time
that a manager becomes available is not known. Managers should be sensitive for
such conditions.

Constructors can only succeed or throw fatal errors without returning a reference. It is
however possible to encounter non-fatal errors during initialization that needs to be
communicated. For instance, a logging manager may not have sufficient access to
write to the specified log file or directory and consequently write to a file with an
arbitrary name in the session’s temp directory instead.

As such, it is advised that Constructors should do as little work as possible, if any,
and defer initialization to the initialize() method. This way the constructor can return a
valid reference while initialization can still throw a non-fatal error.

It is preferred that a fail fast philosophy be followed during initialization and that
errors are left to bubble up through the call stack to the session startup routine rather
than being intercepted.

However, if the implementer chooses to catch errors during the construction or
initialization of a configured Manager, care must be taken to preserve the original
error detail. It must not blindly rely on the availability of other services like a
message, logging or translation manager. If it tries to use such a service and
encounter a problem, the original error must be thrown or it must be preserved as an
inner error on any newly thrown error.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 15

5 Guidelines for Application Developers

In the case of optional managers, the application or implementation’s rules, rather the
infrastructure’s rules, determine if the problem is fatal or not. For example, in one case an
application may simply continue using the default language if no translation manager is
available, while another may consider this a fatal problem.

The startup manager will always return a valid reference to the requested common
infrastructure manager or throw an exception if the manager is not available. This enables
developers to use standard error handling techniques to handle non-fatal cases while
relieving the developer from the burden to test for valid references everywhere.

Sample code of how the StartupManger Instance may be used to retrieve a common
infrastructure manager:

Sample code of how to instantiate an application service via the Service Manager:

DEFINE VARIABLE oLogManager AS ILoggingManager NO-UNDO.

oLogManager = CAST(Ccs.Common.Application:StartupManager:getManager(

GET-CLASS(ILoggingManager)), ILoggingManager).
oLogManager:logMessage("My log message").

DEFINE VARIABLE oSample AS MyService NO-UNDO.

oSample = CAST(Ccs.Common.Application:ServiceManager:getService(

GET-CLASS(MyService)), MyService).
IF oSample:getSomething() THEN ...

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 16

6 References

Chase, S. B., Smith, R. & Elwell, R., 2016. CCS Specification: OpenEdge Application Architecture
Version 1, s.l.: Progress Software.
Judge, P., 2016. Service Manager Specification: Technical design document, s.l.: s.n.
Ormerod, M., 2006. Defining The Openedge® Reference Architecture - Common Infrastructure, s.l.:
Progress Software.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 17

Document Control

Title: Startup Manager Startup Manager SpecificationOpenEdge Application Architecture
Specification (OEAA)

Version: 0.3

Document History

Date Version Author Change Details

2016-05-04 0.1 Simon L Prinsloo Initial draft

2016-05-18 0.1.1 Simon L. Prinsloo Incorporate comments from team

discussion.

Add class diagram.

Add draft source code.

Expand introduction and scope

2016-05-26 0.1.2 Simon L. Prinsloo Incorporate comments from team

discussion.

2016-06-13 0.2 Simon L. Prinsloo Accept all changes and

incorporate feedback.

2016-06-13 0.2 Peter Judge

2016-06-014 0.2 Robin Smith

2016-06-14 0.2 Simon L. Prinsloo Update all fields, as some fields

and the Bibliography reflected old

values.

Change references to

Ccs.Common.Framework to

Ccs.Common.Application.

Minor editing, e.g. breaking apart

long sentences, inserting missing

citations and re-ordering

paragraphs in section 4 to

improve the flow of the

discourse.

2016-06-15 0.3 Simon L. Prinsloo Incorporate spec team feedback

and accept all changes.

2016-06-16 0.3 Simon L. Prinsloo Remove italics formatting in

section 1.4.

Change second example in

section 5 to be consistent with

the first one.

Startup Manager Specification
OpenEdge Application Architecture Specification (OEAA)

Page 18

As noted by Mike Fechner, v. 1.0

should be the final version

accepted after community input.

Thus change the version from 1.0

to 0.3.

