

Session Manager Specification
OpenEdge Framework Technical Design Document

OpenEdge Application Architecture
Specification (OEAA)

Version 1.0

Session Manager Technical Design Document Page 2

Version 1.0

Spec
Team
Members

Shelley B. Chase schase@progress.com Progress

Marian Edu marian.edu@acorn.ro Acorn IT

Rom Elwell* rome@issol.com

Innovative
Software
Solutions

Mike Fechner mike.fechner@consultingwerk.de Consultingwerk

Ganesh Iyer gaiyer@progress.com Progress

Peter Judge pjudge@progress.com Progress

Christopher Longo chlongo@progress.com Progress

Paul Moberg paulmoberg@quickenloans.com Quicken Loans

Mark Opfer mopfer@dmsi.com DMSi

Simon L. Prinsloo simon@vidisolve.com Vidisolve

Robin Smith* rosmith@progress.com Progress

* Denotes contributing author

mailto:schase@progress.com
mailto:marian.edu@acorn.ro
mailto:rome@issol.com
mailto:mike.fechner@consultingwerk.de
mailto:gaiyer@progress.com
mailto:pjudge@progress.com
mailto:chlongo@progress.com
mailto:paulmoberg@quickenloans.com
mailto:mopfer@dmsi.com
mailto:simon@vidisolve.com
mailto:rosmith@progress.com

Session Manager Technical Design Document Page 3

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1 Purpose .. 1
1.2 Scope .. 1
1.3 Definitions, Acronyms and Abbreviations ... 2
1.4 Contents Overview .. 2

2. COMPONENT OVERVIEW ... 3

2.1. Component Description ... 3
2.2. Component Architecture .. 3

2.2.1. Ccs.Common.IManager .. 3

2.2.2. Ccs.Common.ISessionManager .. 3

2.2.3. Ccs.Common.IClientContext ... 4

2.2.4. SessionManager ... 4

2.2.5. ClientContext .. 4
2.3. Component Package Definition ... 4
2.4. Component Property Data and Organization ... 4
2.5. Component Run-time Characteristics ... 5

2.5.1. Session Manager .. 5

2.5.1.1. establishRequestEnvironment () Method 5

2.5.1.2. endRequestEnvironment () Method .. 6

2.5.2. Client Context Object ... 6

2.5.2.1. initializeContext () Method... 6

2.5.2.2. saveContext () Method ... 6
2.6. Component Error Handling .. 7
2.7. Dependencies and interactions with other OERA common components 7

3. COMPONENT INTERFACES AND CLASSES ... 8

3.1. Ccs.Common.ISessionManager .. 8

3.1.1. Public Instance properties ... 8

3.1.2. Public Instance methods .. 8
3.2. Ccs.Common.IClientContext .. 9

3.2.1. Public Instance properties ... 10

3.2.2. Public Instance methods .. 10

4. COMPONENT DESIGN AND IMPLEMENTATION ... 12

5. REFERENCES.. 13

6. DOCUMENT CONTROL ... 14

7. DOCUMENT HISTORY ... 15

Outstanding Issues .. 15

Session Manager Technical Design Document Page 1

1. Introduction

The Common Component Specification (CCS) project is designed to simplify the
development of modern business applications by defining the architecture and
components of a modern application development framework for the OpenEdge
platform. The CCS project identifies a set of specifications for the common
components needed in developing modern business applications.

This document describes the Session Manager as one of the required common
components of the OpenEdge Application Architecture (OEAA).

Each request made to the business services will provide a sealed Client Principal
object (C-P) or a known Session ID that identifies the client making the request. The
Session Manager is responsible for asserting the identity of the client against the
application runtime session and by doing so ensure that the client is valid for the
application runtime. Once the client identity is authenticated, the Session Manager is
responsible for providing a particular client session to service the request and
provide access to the client context data.

A client session has context information associated with it such as user identity, what
branch the user is logged into, date and numeric formats, time zone, etc. The
Session Manager must provide access to this client context data by instantiating a
Client Context object, which will be defined later in this specification. The identity of
this Client Context object is set via public property on the Session Manager and is
assigned either the C-P or Session ID as its value.

When establishing the session, after the C-P or Session ID of the client request has
been validated, the Session Manger must then establish the context data on the first
client request, or re-establish on subsequent requests, based on the client identity.

Once the request has been completed the Session Manager must “end” or “reset”
the session. The Session Manager must reset the application server runtime session
to a “safe” state so that the identity and context data of the client from the last
request is not left asserted against the session and its databases. See section
2.5.1.2 for further details.

1.1 Purpose

The purpose of this document is to describe the required functionality of a Session
Manager within the OpenEdge Application Architecture and define the API required
by a CCS compliant Session Manager.

This document can be referenced by application developers who are using a CCS
compliant framework to understand the expected behavior and functionality of a
Session Manager.

This document should be used by framework developers and implementers of CCS
compliant frameworks as a definition of the minimum requirements and expected
behavior of a Session Manager.

1.2 Scope

The scope of this document is to define the required functionality of the Session
Manager within the OpenEdge Application Architecture.

The Session Manager is responsible for establishing the ABL runtime environment
within which the client request will be executed. The Session Manager will also

Session Manager Technical Design Document Page 2

provide access to the client context data by creating and providing access to a Client
Context object.

The Session Manager is also responsible for returning the ABL runtime environment
to a safe state once the client request has completed.

The scope of this document will also cover the definition of the Client Context object
as a sub component of the Session Manager and used to provide access to the client
context data. Definition describing how to access the context data is left to the
implementation.

1.3 Definitions, Acronyms and Abbreviations

Business Service – Services specific to the purpose of the application.

CCS – Common Component Specification. (Chase, Elwell, & Smith, 2016)

C-P – A client-principal is a handle-based object that functions as a security token in
an ABL application.

OEAA – OpenEdge Application Architecture. (Chase, Elwell, & Smith, 2016)

OERA – OpenEdge Reference Architecture. (Ormerod, 2006)

Manager – Service specific to the Common Infrastructure. (Chase, Elwell, & Smith,
2016)

Service – Self-contained unit of functionality

SOA – Service oriented architecture

1.4 Contents Overview

Section 1 is the introduction and includes a description of the Session Manager.

Section 2 provides the overview of the Session Manager.

Section 3 describes the interfaces and classes used by the Session Manager.

Session Manager Technical Design Document Page 3

2. Component Overview

2.1. Component Description

The Session Manager is used by the Service Interface or the Application Server’s
Activate and Deactivate procedures to establish the ABL runtime environment within
which the client request will be executed. When the request has completed, the
Session Manager is again used to “end” the ABL runtime environment and return it to
a “safe” state ready for the next request.

The Session Manager is responsible for establishing the ABL runtime environment
within which the client request will be executed.

This will include:

 Ensuring that the client’s identity is asserted against the environment in order
to establish the client’s identity for the request.

 Establishing the client context by creating and providing access to a Client
Context object.

The Session Manager is also responsible for returning the ABL runtime to a safe
state once the client request has completed.

This will include:

 Ensuring that a neutral or “low access rights” security token is asserted
against the environment in order to remove the previous client’s identity from
the ABL runtime environment.

 Persisting the Client Context object from the current request so that any
changes made to it are available for subsequent requests.

2.2. Component Architecture

2.2.1. Ccs.Common.IManager

As a manager within the OEAA, the Session Manager will implement the IManager
interface which inherits the IService interface, and therefore, will implement the
initialize () method.

The Session Manager’s initialize () method can be used to retrieve any
configurations it may require in addition to initializing itself.

2.2.2. Ccs.Common.ISessionManager

The CCS requires a ‘pluggable’ model that allows for components from different
vendors to co-exist. As such, the Session Manager will implement a defined
ISessionManager interface.

The ISessionManager interface will enforce a read-only property called
CurrentClientContext as a reference to a Client Context object that will provide
access to the current client’s context data. This property will be defined as an
interface to allow for framework configuration to define the implementation of this
object.

The ISessionManager interface will enforce establishRequestEnvironment () and
endRequestEnvironment () methods used by the Service Interface or the Application

Session Manager Technical Design Document Page 4

Server’s Activate and Deactivate procedures at the start and end of the client
request.

The establishRequestEnvironment () method will have an input parameter for
passing the handle of a C-P object or a known Session ID string. Whilst this handle is
available in the session:current-request-info reference for a client request running on
an Application Server, having it as a parameter will allow for platforms not running on
an Application Server, such as testing and batch processing, to establish a runtime
session by passing a sealed C-P.

2.2.3. Ccs.Common.IClientContext

The Client Context interface is the definition of the current Client Context object
made available by the Session Manager.

The IClientContext interface will enforce an initializeContext () method that will be
used by the Session Manager to pass in either the handle to the client’s C-P object
or a known Session ID string to initialize the Client Context object.

The interface will define a read-only contextID property that will represent a globally
unique ID for the client session from which the current client request originates.

The interface will also define a read-only clientPrincipal property that can publish the
handle to the C-P object representing the identity of the client.

The IClientContext interface will enforce a saveContext () method that can be used
by the Session Manager to have the Client Context object save its context data to a
persistent store so that it can be reinstated on subsequent requests.

It is expected that the Client Context object would behave similar to a property
manager by providing get and set methods for storing context data. This is an
implementation detail of the Client Context object and is not part of this specification.
The application code can cast the CurrentClientContext object to the known type
before accessing any context data.

2.2.4. SessionManager

The Session Manager object will be instantiated during the application framework
bootstrap process. The initialize () method will be called during this phase and the
Session Manager is expected to fetch any configuration data that it may require and
initialize itself.

2.2.5. ClientContext

The Client Context object is created and managed by the Session Manager and
represents the client’s context data. The application code can get access to the
Client Context data through this object which is available on the CurrentClientContext
property on the Session Manager

2.3. Component Package Definition

The Session Manager interface and Client Context interface will be a subset of the
Ccs.Common package.

2.4. Component Property Data and Organization

In terms of the naming conventions, storage organization and interaction between
components, the requirements found in the document CCS Specification: OpenEdge

Session Manager Technical Design Document Page 5

Application Architecture Version 1 also apply to the components defined in this
specification.

2.5. Component Run-time Characteristics

2.5.1. Session Manager

The Session Manager object will be instantiated during the application framework
bootstrap process by the Startup Manager. The initialize () method will be called
during this phase.

The Session Manager is responsible for managing the server runtime environment
within which a client request is executed. Some of those responsibilities could be
delegated to other managers, such as a Security Manager, for example. Because
the first version of the CCS does not define these potentially nominated managers as
required components, the Session Manager may assume responsibility for those
tasks.

2.5.1.1. establishRequestEnvironment () Method

The establishRequestEnvironment () method will be called by the Service Interface
or the Application Servers registered Activate procedure at the start of a client
request. Each client request must have either a sealed C-P object or a known
Session ID associated with it.

When using the C-P, the C-P would typically be available on the SESSION:current-
request-info attribute via the GetClientPrincipal method. The handle to the client
request’s C-P is passed to the establishRequestEnvironment () method. The
establishRequestEnvironment () method will assert the client’s C-P against the
runtime environment by either delegating the task to a Security Manager or simply
using the ABL runtime Security-Policy handle or the ABL set-db-client () function to
validate and assert the C-P. The goal is to validate the client request and then assert
the client’s identity against the ABL runtime environment and connected databases.
This will ensure that other OpenEdge components such as Auditing and Multi-
Tenancy have the required C-P identity.

If the assertion of the C-P fails, the client request should be terminated and an
appropriate error thrown.

When using a known Session ID, the establishRequestEnvironment () method should
validate the value of the Session ID. If this fails, the client request should be
terminated and an appropriate error thrown.

The establishRequestEnvironment () method must instantiate the Client Context
object. The establishRequestEnvironment () method will then call the initializeContext
() method on the Client Context object passing in the handle to the clients C-P or the
known Session ID. The Client Context object is then responsible for initializing its
context. This could be for a first time request or re-establishing its state for
subsequent requests. Any error thrown by the Client Context object during
initialization must terminate the request and an appropriate error thrown.

Once the Client Context object has been established, access to this object is made
available to the runtime session by assigning an object reference to the read-only
CurrentClientContext property of the Session Manager.

Session Manager Technical Design Document Page 6

2.5.1.2. endRequestEnvironment () Method

The endRequestEnvironment () method will be called by the Service Interface or the
Application Servers registered Deactivate procedure at the end of a client request
once the request has been processed.

It is expected that the Service Interface or the activate/deactivate procedures
implement appropriate error handling so that the endRequestEnvironment () method
can be reliably called regardless of errors thrown during the execution of the client’s
request.

The endRequestEnvironment () method must “reset” the runtime session to a safe
state by deleting the current Client Context object and clearing the
CurrentClientContext property (i.e. setting its value to “?” (null) and then asserting a
safe or low-access C-P token against the session and connected databases so that
the identity of the client from the last request is not retained. It is not possible to
assert a “blank” user against the database from the ABL so the Session Manager will
need to have access to or be able to create a sealed C-P. The information required
to perform this task would likely be fetched during the initialize () method call.

Before deleting the current Client Context object, the state of the Client Context must
be saved away so that any changes will be reinstated for subsequent client requests.
The saveContext () method on the Client Context object is used for this purpose.

2.5.2. Client Context Object

The Client Context object represents the client context data for the client making the
request. The current Client Context object is instantiated and made available by the
Session Manager.

The Session Manager must allow for the application to supply the implementation of
the Ccs.Common.IClientContext interface

2.5.2.1. initializeContext () Method

The initializeContext () method will be used by the Session Manager to pass in the
client’s C-P object or a known Session ID. If the C-P is passed, then the Client
Context object will use the C-P as the identity of the requesting client and assign the
handle of the C-P to the read-only clientPrincipal property. If the Session ID is
passed, then the Client Context object will use that Session ID to determine the
identity of the requesting client.

The initializeContext () method must assign a globally unique identifier to the
contextID property. The purpose of the contextID is to uniquely identify the client
context data associated with the client’s session.

The initializeContext () method must then establish or re-establish the client context
data. If it is the first request, then the client context data may be initialized. If it is a
subsequent request, then the context data should be retrieved from a context data
store.

2.5.2.2. saveContext () Method

The saveContext () method may be used by the Session Manager to notify the Client
Context object to save its context data to a persistent store so that the context data
can be reinstated on subsequent request.

Session Manager Technical Design Document Page 7

It should be noted that in a modern browser based UI application client requests can
be asynchronous and care should be taken not to lose changes made to the Client
Context due to browser support for asynchronous messaging.

2.6. Component Error Handling

Any application errors encountered by the Session Manager during the scope of the
establishRequestEnvironment () and endRequestEnvironment () methods, should
throw an error based on the ABL AppError and terminate the request.

Any errors caught by the Session Manager from subcomponents should be
preserved and thrown on so that framework implementers can get meaningful
feedback on what went wrong.

Any System Errors should be thrown and handled by the framework interface.

2.7. Dependencies and interactions with other OERA common components

The C-P passed to the establishRequestEnvironment () method needs to uniquely
define the identity of the client’s session making the request. It is expected that the
sessionID will uniquely identify the C-P within the life time of the web servers running
instance.

If the C-P is created by an ABL runtime, then it is expected that the sessionID will be
assigned a GUID.

The Client Context Object may make use of a Context Data Manager to retrieve and
persist the context data.

Session Manager Technical Design Document Page 8

3. Component Interfaces and Classes

3.1. Ccs.Common.ISessionManager

USING CCS.Common.IManager.
USING CCS.Common.IClientContext.
USING CCS.Common.ServiceLifeCycleEnum.

INTERFACE CCS.Common.ISessionManager INHERITS IManager:

 DEFINE PUBLIC PROPERTY CurrentClientContext AS IClientContext NO-UNDO GET.

 METHOD PUBLIC VOID establishRequestEnvironment(INPUT phClientPrincipal AS HANDLE).
 METHOD PUBLIC VOID establishRequestEnvironment(INPUT pcSessionID AS CHARACTER).

 METHOD PUBLIC VOID endRequestEnvironment().

END INTERFACE.

3.1.1. Public Instance properties

Name CurrentClientContext

Description Holds the reference to the current ClientContext object.

Type Ccs.Common.IClientContext

Getter Public

Setter Not public

Unknown This property will be unknown unless there is a valid client request.

3.1.2. Public Instance methods

Name initialize Inherited from Ccs.Common.IService

Description Initialize the SessionManager

Return Type Void

Parameters None

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

Name establishRequestEnvironment

Description Establish the server session runtime.

Session Manager Technical Design Document Page 9

Return Type Void

Parameters Input Handle The handle to the Client Principal object
representing the client’s session identity

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

Name establishRequestEnvironment

Description Establish the server session runtime.

Return Type Void

Parameters Input Character A known string representing the client’s
session identity

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

Name endRequestEnvironment

Description “End” the server session runtime and return it to a “safe” state.

Return Type Void

Parameters None

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

3.2. Ccs.Common.IClientContext

USING CCS.Common.IService.

INTERFACE CCS.Common.IClientContext:

 DEFINE PUBLIC PROPERTY contextID AS CHARACTER NO-UNDO GET.
 DEFINE PUBLIC PROPERTY clientPrincipal AS HANDLE NO-UNDO GET.

 METHOD PUBLIC VOID initializeConext(INPUT phClientPrincipal AS HANDLE).
 METHOD PUBLIC VOID initializeConext(INPUT pcSessionID AS CHARACTER).

 METHOD PUBLIC VOID saveContext().

END INTERFACE.

Session Manager Technical Design Document Page 10

3.2.1. Public Instance properties

Name contextID

Description A unique ID for the Client Context object.

Type Character

Getter Public

Setter Not public

Unknown This property will be unknown or blank until the object’s context
has been initialized

Name clientPrincipal

Description The handle to the client’s Client Principal object

Type Handle

Getter Public

Setter Not public

Unknown This property will be unknown until the object’s context has been
initialized and a C-P supplied

3.2.2. Public Instance methods

Name initialize() Inherited from Ccs.Common.IService

Description Initialize the Client Context object

Return Type Void

Parameters None

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Name initializeContext()

Description Initialize the context data for the Client Context object

Session Manager Technical Design Document Page 11

Return Type Void

Parameters Input Handle The handle to the Client Principal object
for the client request

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

Name initializeContext()

Description Initialize the context data for the Client Context object

Return Type Void

Parameters Input Character The known Session ID for the client
request

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

Name saveContext()

Description Save the context data to a persistent store

Return Type Void

Parameters None

Exceptions Progress.Lang.SysError
Progress.Lang.AppError

Session Manager Technical Design Document Page 12

4. Component Design and Implementation

This and the following section should provide sufficient information for a developer to
produce the component. The detailed content will depend upon the approach to the
design process that is to be used.

Session Manager Technical Design Document Page 13

5. References

Chase, S. B., Elwell, R., & Smith, R. (2016). CCS Specification: OpenEdge Application Architecture

Version 1. Progress Software.
Ormerod, M. (2006). Defining The Openedge® Reference Architecture - Common Infrastructure.

Progress Software.

Session Manager Technical Design Document Page 14

6. Document Control

Title: Session Manager Technical Design Document

Version: 1.0

Session Manager Technical Design Document Page 15

7. Document History

Date Version Author Change Details

Outstanding Issues

Provide details of any design issues that remain unresolved at the date of
issue of this document. Explain options, pros and cons, and give an estimate
of which option is most likely. Outline impact of each option on the rest of the
design.

