

COMMON COMPONENT SPECIFICATION

TECHNICAL DESIGN DOCUMENT:
CCSSVCMGR01

SERVICE MANAGER

VER SI ON 1 . 0

CCSSVCMGR01 CCS Service Manager v1.0 Page 2 of 23

TABLE OF CONTENTS

1. INTRODUCTION 4

PURPOSE 4

SCOPE 4

DEFINITIONS, ACRONYMS AND ABBREVIATIONS 5

REFERENCES TO EXTERNAL DOCUMENTS 5

CONTENTS OVERVIEW 5

2. COMPONENT OVERVIEW 5

COMPONENT DESCRIPTION 6

SERVICE NAME RESOLUTION 6

RETURNED VALUE 7

SELECTORS-TO-IMPLEMENTATION MAPPING 7

LIFECYCLE MANAGEMENT 8

LIFECYCLE SCOPES 9

CONFIGURATION DATA 10

COMPONENT ARCHITECTURE 10

COMPONENT PACKAGE DEFINITION 10

COMPONENT PROPERTY DATA AND ORGANIZATION 10

COMPONENT RUN-TIME CHARACTERISTICS 10

COMPONENT ERROR HANDLING 11

ERROR CODES 12

DEPENDENCIES AND INTERACTIONS WITH OTHER COMMON STANDARDS 12

3. COMPONENT INTERACTION WITH EXTERNAL SUB-SYSTEMS 12

4. COMPONENT INTERFACES AND CLASSES 13

CCS.COMMON.ISERVICE 13

CCS.COMMON.ISERVICEMANAGER 13

CCS.SERVICEMANAGER.ILIFECYCLESCOPE 14

CCS.SERVICEMANAGER.ITRANSIENTSCOPE 15

CCS.SERVICEMANAGER.ISESSIONSCOPE 15

CCSSVCMGR01 CCS Service Manager v1.0 Page 3 of 23

CCS.SERVICEMANAGER.IREQUESTSCOPE 16

CCS.SERVICEMANAGER.ICONTAINERSCOPE 16

5. ASYNCHRONOUS APPLICATION CALLBACKS 17

6. COMPONENT DESIGN AND IMPLEMENTATION 17

COPYRIGHT NOTICE 17

CCS.COMMON.ISERVICE 18

CCS.COMMON.IMANAGER 18

CCS.COMMON.ISERVICEMANAGER 18

CCS.SERVICEMANAGER.ILIFECYCLESCOPE 19

CCS.SERVICEMANAGER.ITRANSIENTSCOPE 20

CCS.SERVICEMANAGER.ISESSIONSCOPE 20

CCS.SERVICEMANAGER.IREQUESTSCOPE 21

CCS.SERVICEMANAGER.ICONTAINERSCOPE 21

DESIGN METHOD AND STANDARDS 21

NAMING CONVENTIONS 21

PROGRAMMING STANDARDS 21

7. REFERENCES 22

8. DOCUMENT CONTROL 22

SPECIFICATION TEAM 22

9. DOCUMENT HISTORY 23

10. OUTSTANDING ISSUES 23

CCSSVCMGR01 CCS Service Manager v1.0 Page 4 of 23

1. INTRODUCTION

The Common Component Specification (CCS) project is designed to simplify the development

of modern business applications by defining the architecture and components of a modern

application development framework for the OpenEdge platform. The CCS project identifies a set

of specifications for the common components needed in developing modern business

applications. This document describes the Service Manager as one of the required common

components of the OpenEdge Application Architecture (OEAA).

The ability to program to abstractions (i.e. coding to a set of defined interfaces) is what allows

the CCS to meet its goal of allowing interoperable components across frameworks and

applications. The Service Manager is the infrastructure component that manages the relationship

between the abstraction (an OO type name) and the implementing instance (a concrete,

instantiable OO type name).

At its simplest, the Service Manager allows a component to request an instance of a (for

example) Ccs.Common.ILoggingManager and receive a usable instance of a class that

implements that interface without knowing or caring about the implementing type (e.g.

Application.Util.DbLogManager) or how it was started or how long it will live for (transient

or scoped to the life of the session or current request).

Purpose

The purpose of this document is to describe the required functionality of a Service Manager

within the OpenEdge Application Architecture and define the API required by a CCS compliant

Service Manager. This document can be referenced by application developers who are using a

CCS compliant framework to understand the expected behaviour and functionality of a Service

Manager. This document should be used by framework developers and implementers of CCS

compliant frameworks as a definition of the minimum requirements and expected behaviour of a

Service Manager.

Scope

The scope of this document is to define the required functionality of the Service Manager within

the OpenEdge Application Architecture. The Service Manager MUST provide (object)

references to the application for both framework/infrastructure and business/domain components.

It is also responsible for instantiating these application services and managing their life cycle

(startup and shutdown).

This document SHALL NOT define the Service Manager's management of the configuration

data needed to perform its roles.

CCSSVCMGR01 CCS Service Manager v1.0 Page 5 of 23

Definitions, Acronyms and Abbreviations

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 (Bradner, S., Key words for use in

RFCs to Indicate Requirement Levels , BCP 14, RFC 2119, March 1997.

https://www.ietf.org/rfc/rfc2119.txt)

Term Definition

CCS Common Component Specification. Overview and links at

https://github.com/progress/CCS

OERA OpenEdge Reference Architecture (Ormerod, 2006)

OEAA OpenEdge Application Architecture, as defined by the published CCS

Architecture spec at

https://github.com/progress/CCS/blob/master/Specs/CCSSpec-ARCH10.pdf

(Chase, Elwell & Smith, 2016)

type

name

An OO class, interface or enum name. Enums, interfaces and abstract classes are

not instantiable.

marker

interface

An interface whose mere presence indicates specific behaviour. Via

https://en.wikipedia.org/wiki/Markerinterface pattern

References to external documents

Contents Overview

Section 1 is the introduction and includes a description of the Service Manager.

Section 2 provides the overview of the Service Manager.

Section 3 describes the interfaces and classes used by the Service Manager.

2. COMPONENT OVERVIEW

An application service is an object containing business and infrastructure functions that are either

exposed to the client through (a) service interface(s) or by common reusable business and

infrastructure functions used by other application components or services. Application services

may be business components (which includes Business Entities, ~Tasks and ~Workflows as

defined by the OpenEdge Reference Architecture / OERA) or infrastructure components (which

includes Common Infrastructure components as defined by the OERA and/or the CCS-defined

OpenEdge Application Architecture / OEAA).

The Ccs.ServiceManager.IServiceManager defines the primary component (the Service

Manager) and API; a number of other interfaces are provided in support of it.

https://github.com/progress/CCS
https://github.com/progress/CCS/blob/master/Specs/CCSSpec-ARCH10.pdf
https://en.wikipedia.org/wiki/Markerinterface

CCSSVCMGR01 CCS Service Manager v1.0 Page 6 of 23

The Service Manager is classified as a Required Component of the OEAA. (Chase, et al., 2016,

p. 8)

The Service Manager's API may be consumed by Service Interface components (for business

components), by Business Components (for common infrastructures components not directly

exposed by the Startup Manager; for other business components), by common infrastructure

components (for other common infrastructure components, for business components, for

dependency injection/resolution) as well as by other components not described in this

specification.

Component Description

The Service Manager provides two categories of functionality: service name resolution and

lifecycle management.

SERVICE NAME RESOLUTION

As mentioned in the Introduction, the Service Manager is the infrastructure component that

manages the relationship between the abstraction (an OO type name) and the implementing

instance (a concrete, instantiable OO type name).

The Service Manager provides a getService API to perform this name resolution. This API has

two arguments, taken from:

1. The service name (REQUIRED). This is the primary selector (key) used to find an

implementation. It MUST be an OOABL type reference (Progress.Lang.Class). An

implementation SHOULD always use this type to validate the returned object instance's

type. This type reference can refer to any OO type: it is typically an interface, but

concrete and abstract classes can be used, as can enumerations.

2. A scope selector (OPTIONAL). The desired lifecycle scope of the requested service. The

Service Manager MAY respect this parameter, or may choose to use its configuration

data.

3. An alias (OPTIONAL). An application-/implementation-specific string. In certain cases

an alias value as a second key value MAY be used to identify an implementing class. The

Service Manager may use this information to make a better choice, given its internal

configuration. The alias allows an implementation to provide special behaviour without

requiring a full type name.

The normal getService(App.GL.LedgerManager) may return an object with a session scope,

but an alternate, transient, instance may be obtained via a call using a specific scope:

getService(App.GL.LedgerManager, ITransientScope).

An application may have a number of business entities that all implement the

Ccs.BusinessLogic.IBusinessEntity interface with no other uniquely identifying interfaces.

CCSSVCMGR01 CCS Service Manager v1.0 Page 7 of 23

A service interface may in this case request a service that implements IBusinessEntity interface

and has an alias value of eCustomer.

RETURNED VALUE

The getService API is defined as returning a usable instance of Progress.Lang.Object; the

actual type returned SHOULD be of the requested type when a type reference is used.

A "usable instance" is defined as an object instance that has been instantiated (non-null) and has

had any initialisation performed (i.e. for types that implement the IService interface, the

initialize method has been called).

Applications that use (persistent) procedure-based business logic services MUST return the

procedure handle wrapped in an object, such as an instance of the

OpenEdge.Core.WidgetHandle class provided by Progress Software. Extra care should be take

to manage the life of the procedure handles since the AVM's garbage collection does not operate

on handles.

SELECTORS-TO-IMPLEMENTATION MAPPING

The getService API SHOULD use some form of externalisable configuration data (like config

files or database tables) to specify the selector-to-implementation mapping, although this is left

entirely to the implementer (and so could be a CASE statement or REPLACE function).

An implementer MAY choose to use explicit mapping or an algorithm-based approach or an

approach that favours convention over configuration.

Service type P.L.

Class

IsInter

face

P.L.

Class

IsAbs

tract

P.L.

Class

IsEnum

Implemen

tation ___

support

support

alias

Comments

Interface YES NO NO MUST SHOULD If an alias is used and

there is no exact

implementing class

found in the

configuration data, the

implementation

SHOULD try to resolve

the selection without

the alias.

Abstract

class

NO YES NO MUST SHOULD If an alias is used and

there is no exact

implementing class

found in the

configuration data, the

implementation

CCSSVCMGR01 CCS Service Manager v1.0 Page 8 of 23

Service type P.L.

Class

IsInter

face

P.L.

Class

IsAbs

tract

P.L.

Class

IsEnum

Implemen

tation ___

support

support

alias

Comments

SHOULD try to resolve

the selection without

the alias.

Instantiable

class

NO NO NO MUST MUST

NOT

If an alias is used, the

implementation MUST

throw an error.

Enumeration NO NO YES SHOULD MUST Implementations that

do not support

enumeration types

MUST return an error.

The individual

enumerator MUST be

specified as an alias.

Eg. getService(get-
class(Example.Event

HandlerEnum),

'LogicHandler')

If the selectors cannot be resolved into an instance, an error of type Progress.Lang.AppError

MUST be thrown by the implementation. A null object MUST NOT be returned.

LIFECYCLE MANAGEMENT

The Service Manager is responsible for the management of the implementing objects' lifecycles,

including startup, caching and managed destruction. Objects created and returned by the

getService API always have an associated lifecycle scope. This scope indicates the expected

lifetime of the object, and includes values like "session" (effectively a singleton), "request" and

"container", which is a container of the application's choosing.

Scopes have a type (an OO interface name) and a value (returned by a getScope API).

Scope

type

Meaning Destruction Scope value

Transient The lifecycle of the

instance is not

managed by the

Service Manager. One

instance, running free,

like a wolf.

Practically, this means

a new instance of the

type will be created

each time one is

Standard/normal garbage-

collection rules apply

This MUST be the

unknown / null value

CCSSVCMGR01 CCS Service Manager v1.0 Page 9 of 23

Scope

type

Meaning Destruction Scope value

requested. This is

typically the default

scope if none is

specified.

Session Only a single instance

of the type will be

created in an ABL

session, and the same

instance will be

returned for each

subsequent request.

Will be destroyed when the

AVM session is terminated

PASOE sessions have an

identifier accessible from

the session:current-
request-info:SessionId

property ; client and

Classic AppServer sessions

do not. Implementers

SHOULD use a non-blank

value.

Request One instance of the

type will be created

for each request made

to an AppServer. Does

not apply to

interactive clients.

Destroyed after a request,

typically as part of an

AppServer's deactivate

event procedure. Requires

an explicit stopServices

call.

AppServer sessions have

an identifier accessible

from the
session:current-

request-info:RequestId
property

Container Custom scope, as

determined by an

implementer. Can be

thought of as a

"named scope".

Requires an explicit

stopServices call made

by the

application/framework.

This value is entirely

application-dependent. It

SHOULD NOT be the

unknown/null value

Scope types are typically provided as part of the configuration data. Scope values are needed for

some scope types - "container" in particular.

The Service Manager provides a stopServices API which takes a scope indicator as a

parameter. This API will destroy and remove from its cache(s) all instances that were started

with the specified scope. Generally-speaking , this API is intended to be called when a request,

session or some other application-defined context is complete.

Objects that implement the IService interface MUST have their dispose method called before

deletion.

Calling the stopServices API for transient scope is undefined behaviour and SHOULD NOT

return an error.

LIFECYCLE SCOPES

Scopes will be defined as a set of interfaces that MUST ultimately inherit from a

Ccs.ServiceManager.ILifecycleScope type. This is to allow a Service Manager to gracefully

follow a path if a particular scope is not supported by the implementation. For example,

CCSSVCMGR01 CCS Service Manager v1.0 Page 10 of 23

Example.A.ServiceManager may only support Session Scope but MUST gracefully handle a

stopServices call which has a Request Scope argument passed in.

A scope MAY return some data to identify the scope via the getScope method, which returns

specifics of the Scope. For instance, for a Request scope it would return the value of the

session:current-request-info:RequestId .

This specification will define the initial hierarchy of scopes. Implementers MUST support

Request and Session scope to be spec-compliant.

CONFIGURATION DATA

This specification does NOT describe to format of the configuration data used by the Service

Manager, nor its location nor means of loading.

This specification RECOMMENDS that the storage of configuration data be kept separate from

the Service Manager implementation (ie don't add a CASE statement into the getService API).

Configuration data MUST at a minimum contain - a primary selector - an implementing type

The data SHOULD contain a lifecycle scope, and MAY contain any additional information to

support the functionality of the Service Manager (eg for Dependency Injection purposes).

Component Architecture

Component Package Definition

The Service interface will be in the Ccs.Common package. The Service Manager and other

components (scopes) will be in the Ccs.ServiceManager package.

Component Property Data and Organization

In terms of the naming conventions, storage organization and interaction between components,

the requirements found in the document CCS Specification: OpenEdge Application Architecture

Version 1 also apply to the components defined in this specification.

Component Run-time Characteristics

The Service Manager will be instantiated by the session bootstrap mechanism, which SHOULD

be an implementation of the Ccs.Common.IStartupManager.

The Service Manager SHOULD be run as a singleton to allow for objects to be cached within its

scope (ie if the Service Manager is destroyed, it is reasonable to assume that any caches it

CCSSVCMGR01 CCS Service Manager v1.0 Page 11 of 23

maintains are flushed/cleared). The lifecycle of the Service Manager itself SHOULD be at least

as long as the longest / broadest lifecycle scope it supports.

It is RECOMMENDED that the Service Manager be one of (if not) the first components started

in an application and one of (if not) the last components destroyed in the application.

Since the Service Manager implements the IManager and IService interfaces, the

initialize() method MUST be run at startup.

The Service Manager MAY choose to load configuration data during the initialisation phase. If

data is loaded during startup, it is RECOMMENDED that this be done in the initialize()

method and not a constructor.

Recognising that global state is not considered a best practice, it is RECOMMENDED that the

Service Manager instance be globally available to an application. This is to avoid having to make

sweeping changes to all application objects/services to accept a reference the Service Manager,

or to traverse the tree of extant objects whenever a new service is requested.

If an application implements the OEAA (as defined by the CCS Architecture Specification) then,

once instantiated, the reference to the Service Manager MUST be set on the

Ccs.Common.Application's static ServiceManager property. This is REQUIRED in order to

comply with the CCS Architecture Specification.

If an application does not desire compliance to the CCS Architecture Specification, then it

SHOULD be set on the Ccs.Common.Application's static ServiceManager property.

At this point the Service Manager MUST be ready to accept requests.

The Service Manager SHOULD delegate requests for services that are Managers to the Startup

Manager, which is accessible from the Ccs.Common.Application's static StartupManager

property. The getManager API is provided for this purpose. Implementers should take care to

ensure that an infinite loop does not result where the Startup Manager calls the Service Manager

which calls the Startup Manager ad inifinitum for the same manager type.

Implementers should take care to ensure that a request for the ServiceManager returns itself.

Component Error Handling

It is preferred that a fail fast philosophy be followed during initialization. Errors SHOULD be

left to bubble up through the call stack to the session startup or service interface routines rather

than being intercepted.

Errors MUST have messages, and MUST NOT rely on a Progress.Lang.AppError's

ReturnValue property for message strings. Thus when the default constructor or the constructor

CCSSVCMGR01 CCS Service Manager v1.0 Page 12 of 23

taking only a string is used to instantiate an Progress.Lang.AppError, it MUST be followed

with a call to the AddMessage() method before the error is thrown.

An implementation MAY catch errors thrown and return them with a code as described below.

ERROR CODES

The error codes and texts are suggested values for errors thrown by an implementation.

Error type Code Text Usage

Progress.Lang.AppError 2000 Unhandled error: <error-message>

Progress.Lang.AppError 2001 Service implementation cannot be found for

<service-name >

Progress.Lang.AppError 2002 Unsupported service type: <service-type: abstract

class, class, interface, enumeration>

Progress.Lang.AppError 2003 Invalid <argument-name: alias, scope, service

name> argument <argument-value>

Progress.Lang.AppError 2004 Invalid request for service type <service-type:

abstract class, class, interface, enumeration> with

argument <argument-name: alias, scope>

Dependencies and interactions with other common standards

Component Nature

Ccs.Common.IStartupManager A request for an instance of IManager MUST be

delegated to the Startup Manager (if one is stored

in the Ccs.Common.Application's

StartupManager property)

Ccs.Common.Application:ServiceManager A global reference to the Service Manager.

Serves two purposes: to keep the Service

Manager alive; to provide access from anywhere

in a session without passing a reference

3. COMPONENT INTERACTION WITH EXTERNAL SUB-
SYSTEMS

As stated in the Introduction, the Service Manager's purpose is to provide references to various

application components. The Service Manager may thus be used (called) by a wide variety of

components.

CCSSVCMGR01 CCS Service Manager v1.0 Page 13 of 23

4. COMPONENT INTERFACES AND CLASSES

All method parameters are INPUT unless otherwise noted by an IN-OUT or OUT prefix.

Ccs.Common.IService

An OPTIONAL common base interface for all application services. REQUIRED for OEAA

Manager types (via the Ccs.Common.IManager interface).

An implementing class SHOULD have a default (no-argument) constructor.

Ancestors

None.

Methods
Name Return type Parameter list Description

initialize void none Initializer/Startup

dispose void none Shutdown/Anti-Initializer.

Properties

There are no properties specified for this type.

Events

There are no events specified for this type.

Ccs.Common.IServiceManager

The IServiceManager interface represents the public API of the component. All interactions

with the Service Manager component MUST be done through this interface.

Ancestors

Ccs.Common.IManager which inherits fromCcs.Common.IService

Methods

In addition to the methods specified by the ancestor types,

Name Return type Parameter list Description

CCSSVCMGR01 CCS Service Manager v1.0 Page 14 of 23

getService Progress.Lang.Object service-name (Progress.Lang.Class) Returns a

usable

instance of

the requested

service.

getService Progress.Lang.Object service-name (Progress.Lang.Class),

scope

(Ccs.ServiceManager.ILifecycleScope)

Returns a

usable

instance of

the requested

service

getService Progress.Lang.Object service-name (Progress.Lang.Class),

alias (character)

Returns a

usable

instance of

the requested

service

stopServices void scope

(Ccs.ServiceManager.ILifecycleScope)

Destroys and

flushes from

any cache(s)

objects

scoped to the

argument

scope.

Properties

There are no additional properties specified in addition to those specified by the ancestor types.

Events

There are no additional events specified in addition to those specified by the ancestor types.

Ccs.ServiceManager.ILifecycleScope
Ancestors

None

Methods
Name Return type Parameter

list

Description

getScope Progress.Lang.Object none Returns a unique identifier for this scope.

See the Component Description for example

values

CCSSVCMGR01 CCS Service Manager v1.0 Page 15 of 23

Properties

There are no properties specified for this type.

Events

There are no events specified for this type.

Ccs.ServiceManager.ITransientScope

A scope that indicates that the lifecycle of the instance is NOT controled/managed by the Service

Manager. This is a marker interface (it does not extend its ancestors' members).

Ancestors

Ccs.ServiceManager.ILifecycleScope

Methods
Name Return type Parameter

list

Description

getScope Progress.Lang.Object none Returns a unique identifier for this scope. For

transient scopes this value MUST be an the

unknown value (not-valid object)

Properties

There are no additional properties specified in addition to those specified by the ancestor types.

Events

There are no additional events specified in addition to those specified by the ancestor types.

Ccs.ServiceManager.ISessionScope

A scope that indicates an entire ABL/AVM session. This is a marker interface (it does not extend

its ancestors' members).

CCSSVCMGR01 CCS Service Manager v1.0 Page 16 of 23

Ancestors

Ccs.ServiceManager.ILifecycleScope

Properties

There are no additional properties specified in addition to those specified by the ancestor types.

Events

There are no additional events specified in addition to those specified by the ancestor types.

Ccs.ServiceManager.IRequestScope

A scope that indicates a single requrest to an Application Server. This is a marker interface (it

does not extend its ancestors' members).

Ancestors

Ccs.ServiceManager.ISessionScope

Properties

There are no additional properties specified in addition to those specified by the ancestor types.

Events

There are no additional events specified in addition to those specified by the ancestor types.

Ccs.ServiceManager.IContainerScope

A implementation-defined scope. This is a marker interface (it does not extend its ancestors'

members).

Ancestors

Ccs.ServiceManager.ISessionScope

CCSSVCMGR01 CCS Service Manager v1.0 Page 17 of 23

Properties

There are no additional properties specified in addition to those specified by the ancestor types.

Events

There are no additional events specified in addition to those specified by the ancestor types.

5. ASYNCHRONOUS APPLICATION CALLBACKS

6. COMPONENT DESIGN AND IMPLEMENTATION

ABL source code for the Service Manager is also available on GitHub (URL tbd). This published

specification provides the canonical definition of the Service Manager; in cases where the spec

and code differ, this document wins.

Copyright notice

For brevity, copyright headers have been removed from the code below. The standard CCS

copyright header is

/*--
 This Software is licensed by Progress Software Corporation (licensor)
 under the Progress Software Common Component Specification Project
 Release License Agreement available at
 https://community.progress.com/products/directions/common_component/p/releaselicenseagreement

 The Interface definition is part of the Common Component Specification [CCSSVCMGR01]. The
 file is considered as a Specification Implementation Condition as described
 in section 2.1.1.1: If Licensor has made Specification Implementation
 Conditions available as of the date Licensee completes its Independent
 Implementation, then Licensee must, prior to making any claim that its
 Independent Implementation complies with the Specification, ensure that
 the Independent Implementation satisfies all of the Specification
 Implementation Conditions. If Licensor subsequently makes available or
 updates, from time to time, the Specification Implementation Conditions,
 then Licensee will verify that its Independent Implementation satisfies the
 latest version of the Specification Implementation Conditions within ninety
 (90) days following Licensor's release thereof.

 Contributors:
 <name>, <organisation> <date>
--*/

CCSSVCMGR01 CCS Service Manager v1.0 Page 18 of 23

Ccs.Common.IService

/*--
 File : IService
 Purpose : Base service definition
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :
 --*/
interface Ccs.Common.IService:

 /* Initializer/Startup */
 method public void initialize().

 /* Shutdown/Anti-Initializer */
 method public void dispose().

end interface.

Ccs.Common.IManager

The definition of the IManager interface is taken from the Startup Manager Specification

(Prinsloo et al, 2016) and is included here for completeness

USING Ccs.Common.IService FROM PROPATH.

INTERFACE Ccs.Common.IManager INHERITS IService:

END INTERFACE.

Ccs.Common.IServiceManager

/*--
 File : IServiceManager
 Purpose : Base Service Manager interface
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :

CCSSVCMGR01 CCS Service Manager v1.0 Page 19 of 23

 --*/

interface Ccs.Common.IServiceManager inherits Ccs.Common.IManager:
 /* Returns a usable instance of the requested service.

 @param P.L.Class The service name requested
 @return P.L.Object A usable instance
 @throws P.L.AppError Thrown when no implementation can be found */
 method public Progress.Lang.Object getService(
 input poService as class Progress.Lang.Class).

 /* Returns a usable instance of the requested service.

 @param P.L.Class The service name requested
 @param ILifecycleScope A requested scope. The implementation may choose to
 ignore this value.
 @return P.L.Object A usable instance
 @throws P.L.AppError Thrown when no implementation can be found */
 method public Progress.Lang.Object getService(
 input poService as class Progress.Lang.Class,
 input poScope as Ccs.ServiceManager.ILifecycleScope).

 /* Returns a usable instance of the requested service.

 @param P.L.Class The service name requested
 @param character An alias for the service. The implementation may choose
 to ignore this value.
 @return P.L.Object A usable instance
 @throws P.L.AppError Thrown when no implementation can be found */
 method public Progress.Lang.Object getService(
 input poService as class Progress.Lang.Class,
 input pcAlias as character).

 /* Destroys and flushes from any cache(s) objects scoped to the argument
 scope.

 @param ILifecycleScope A requested scope for which to stop services. */
 method public void stopServices(
 input poScope as Ccs.ServiceManager.ILifecycleScope).

end interface.

Ccs.ServiceManager.ILifecycleScope

/*--
 File : ILifecycleScope

CCSSVCMGR01 CCS Service Manager v1.0 Page 20 of 23

 Purpose : Marker for lifecycle scopes
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :
 --*/
interface Ccs.ServiceManager.ILifecycleScope:

 /* Returns a unique identifier for this scope.

 @returnProgress.Lang.Object An identifier for the scope. May be a wrapper
 around an ABL primitive. May be unknown. */
 method public Progress.Lang.Object getScope().

end interface.

Ccs.ServiceManager.ITransientScope

/*--
 File : ITransientScope
 Purpose : Transient scope definition - lifecycle is not managed by
 the Service Manager
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :
 --*/

interface Ccs.ServiceManager.ITransientScope inherits Ccs.ServiceManager.ILifecycleScope:

end interface.

Ccs.ServiceManager.ISessionScope

/*--
 File : ISessionScope
 Purpose : Will be destroyed when the AVM session is terminated
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :
 --*/

interface Ccs.ServiceManager.ISessionScope inherits Ccs.ServiceManager.ILifecycleScope:

CCSSVCMGR01 CCS Service Manager v1.0 Page 21 of 23

end interface.

Ccs.ServiceManager.IRequestScope

/*--
 File : IRequestScope
 Purpose : Destroyed after a request, typically as part of an AppServer's
 deactivate event procedure. Requires an explicit stopServices call.
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :
 --*/

interface Ccs.ServiceManager.IRequestScope inherits Ccs.ServiceManager.ILifecycleScope:

end interface.

Ccs.ServiceManager.IContainerScope

/*--
 File : IContainerScope
 Purpose : Custom application lifecycle scope
 Author(s) : pjudge@progress.com
 Created : 2016-09-26
 Notes :
 --*/

interface Ccs.ServiceManager.IContainerScope inherits Ccs.ServiceManager.ILifecycleScope:

end interface.

Design method and standards

Naming conventions

Programming standards

CCSSVCMGR01 CCS Service Manager v1.0 Page 22 of 23

7. REFERENCES

 Chase, S. B., Elwell, R., & Smith, R. (2016). CCS Specification: OpenEdge Application

Architecture Version 1. Progress Software.

Ormerod, M. (2006). Defining The Openedge® Reference Architecture - Common

Infrastructure. Progress Software.

Prinsloo S. L., Elwell, R., Judge, P., & Smith, R. (2016). Startup Manager Specification

OpenEdge Application Architecture Specification (OEAA) version 1.0. Progress Software.

8. DOCUMENT CONTROL
Document

attribute

Value

Title Service Manager Specification OpenEdge Application Architecture

Specification (OEAA)

Version 1.0.0

Last-Update-At 2016-09-26

Last-Update-By @PeterJudge-PSC

SPECIFICATION TEAM

Name Email / GitHub Organisation

Shelley B. Chase schase@progress.com / @sbschase Progress Software Corp

Marian Edu* marian.edu@acorn.ro / @akera-io Acorn IT

Rom Elwell rome@issol.com / @romelwell Innovative Software

Solutions

Mike Fechner* mike.fechner@consultingwerk.de /

@mikefechner

Consultingwerk

Ganesh Iyer+ gaiyer@progress.com / @ganeshn9 Progress Software Corp

Peter Judge* pjudge@progress.com / @PeterJudge-PSC Progress Software Corp

Christopher

Longo

chlongo@progress.com Progress Software Corp

Paul Moberg paulmoberg@quickenloans.com Quicken Loans

Mark Opfer mopfer@dmsi.com / @MarkOpferDMSI DMSi

Simon L.

Prinsloo*

simon@vidisolve.com / @SimonLPrinsloo Vidisolve

Robin Smith* rosmith@progress.com / @RobinSmith-PSC Progress Software Corp

* contributing author

+ team lead

http://twitter.com/PeterJudge-PSC%3C/a

CCSSVCMGR01 CCS Service Manager v1.0 Page 23 of 23

9. DOCUMENT HISTORY
Date Author Comment

2016-09-20 @PeterJudge-PSC Initial draft for internal review

2016-09-21 @PeterJudge-PSC Updated with feedback from initial internal review mtg

2016-09-26 @PeterJudge-PSC Updated after email review. Feedback from Marian Edu,

Mike Fechner

2016-12-19 @PeterJudge-PSC Updated after community review. Feedback from Carl

Verbiest

10. OUTSTANDING ISSUES

