

Common Component Specification
Technical Design Document

Business Entity

Version 1.0

Version 1.0

Spec
Team
Members

Freddy Boisseau* flb@smsgroup.com
Structured
Management
Systems

Mike Fechner* mike.fechner@consulti
ngwerk.de Consultingwerk

Dustin Grau dugrau@progress.com Progress Bravepoint

Peter Judge* pjudge@progress.com Progress Software

Chris Koster chrisk@mip.co.za MIP

Robin Smith* rosmith@progress.com Progress Bravepoint

Carl Verbiest cverbiest@cce.be CCE
* Denotes contributing author

Common Component Specification – Business Entity V1Business Entity Page ii
30/09/2016 17:20:00

TABLE OF CONTENTS

1 INTRODUCTION ... 1
1.1 Purpose .. 2
1.2 Scope .. 3
1.1 1.3 Definitions, Acronyms and Abbreviations .. 4
1.4 References to external documents .. 5
1.5 Contents Overview .. 6

2 COMPONENT OVERVIEW ... 7
2.1 Component Description .. 8
2.2 Component Architecture .. 10
2.3 Component Package Definition ... 18
2.4 Component Property Data and Organization ... 19
2.5 Component Error Handling .. 20
2.6 Dependencies and interactions with other OERA common standards 22

3 COMPONENT INTERFACES AND CLASSES ... 23
3.1 Ccs.BusinessLogic.IBusinessEntity ... 24
3.2 Ccs.BusinessLogic.IUpdatableBusinessEntity .. 27
3.3 Ccs.BusinessLogic.ISupportNamedOperations .. 29
3.4 Ccs.BusinessLogic.IGetDataRequest ... 30
3.5 Ccs.BusinessLogic.IGetDataTableRequest .. 32
3.6 Ccs.BusinessLogic.IQueryDefinition .. 37
3.7 Ccs.BusinessLogic.IQueryEntry .. 39
3.8 Ccs.BusinessLogic.IQueryGroup .. 40
3.9 Ccs.BusinessLogic.IQueryPredicate ... 41
3.10 Ccs.BusinessLogic.IQuerySortEntry .. 43
3.11 Ccs.BusinessLogic.JoinEnum ... 44
3.12 Ccs.BusinessLogic.QueryOperatorEnum ... 45
3.13 Ccs.BusinessLogic.SortOrderEnum ... 47
3.14 Ccs.BusinessLogic.INamedQuery ... 48
3.15 Ccs.BusinessLogic.INamedQueryParameter ... 50
3.16 Ccs.BusinessLogic.IGetDataResponse .. 52
3.17 Ccs.BusinessLogic.IGetDataTableResponse ... 54
3.18 Ccs.BusinessLogic.IGetResultCountResponse ... 56
3.19 Ccs.BusinessLogic.IGetTableResultCountResponse ... 57
3.20 Ccs.BusinessLogic.IUpdateDataRequest ... 59
3.21 Ccs.BusinessLogic.CommitScopeEnum .. 61

4 GUIDELINES FOR IMPLEMENTERS ... 62

5 OUTSTANDING ISSUES .. 65

Common Component Specification – Business Entity V1Business Entity Page 1
30/09/2016 17:20:00

1 Introduction
The Common Component Specification (CCS) project is designed to simplify the
development of modern business applications by defining the architecture and
components of a modern application development framework for the OpenEdge
platform. The CCS project identifies a set of specifications for the common
components needed in developing modern business applications. When these
components are built as part of a modernization framework, application developers
can concentrate more on the business logic of the application rather than on
infrastructure and integration.

The CCS Specification: Business Entity Version 1.0 builds on the Progress®
OpenEdge® Reference Architecture (OERA) blueprint and defines interfaces and
behaviour to use when developing Business Entity components with OpenEdge. The
Business Entity is a central service component for data retrieval and data processing
in business applications. The Business Entity is designed to be compliant with
services oriented architectures (SOA) in general and especially the OpenEdge
Application Architecture Specification Version 1.0.

Business Entities executed on the OpenEdge Application servers have become the
central data access component for various Progress Software products such as the
JSDO, Telerik’s Kendo UI and Mobile products, Rollbase and DataDirect
OpenAccess SDK for OpenEdge over the OpenEdge 11 releases. Independent
software vendors and framework providers are using different tailor-made or
standard frameworks already that are using Business Entity Components as
described in the OpenEdge Reference Architecture.

The CCS Business Entity Specification describes the Business Entity component in a
way that will allow to developers to use Business Entities from different CCS
compliant frameworks that support the Business Entity specification.

These CCS specifications can be used in multiple ways. Some vendors will provide
complete framework implementations, supporting all the CCS specifications while
others might provide partial, focused frameworks only supporting some of the
specifications, and others will implement single components for use with a CCS-
compliant framework. For example, a security component might be provided by a
specific vendor that specializes in security while another vendor focuses on UI
metadata. For this reason, every component will be versioned independently of the
CCS architectural version. As long as the components follow the architectural
specification, components compliant to that architecture should work together nicely.
For this reason, component specifications MUST identify the CCS OEAA
architectural version or versions for which they are compatible.

Common Component Specification – Business Entity V1Business Entity Page 2
30/09/2016 17:20:00

1.1 Purpose
A Business Entity is defined in the OVERVIEW OF THE OPENEDGE REFERENCE
ARCHITECTURE (Sadd, 2007) as the most basic business component, which
manages a related set of data representing a meaningful business object such as an
Order or a Customer. The Business Entity defines the data using a logical schema,
typically defined as a ProDataSet with one or more ABL temp-tables, which
represents the data in the way best suited to the needs of the business logic, and to
the user interface and other Service Requesters, regardless of how the data happens
to be stored in a database or other source. Together with its Service Interface(s), the
Business Entity defines all the entry points that can be accessed by a particular
requester type, and holds all the business logic for the data.

From this definition it should be clear that most applications have a component
similar (of not identical) in design and intent to a Business Entity, although it may
have a different name.

Business Entities have become widely implemented over the past decade as a
central component of the OpenEdge Reference Application (OERA). Purpose of this
document is to define the behaviour, interfaces and interactions with business
entities as a standard component of the OpenEdge Application Architecture (OEAA)
allowing both interaction and interchangeability of components from different vendors
or developers.

The goal of the CCS project is to define a prescriptive architecture and standard set
of specifications for the common components used in business applications by
engaging the OpenEdge community and leveraging its expertise in building the best
enterprise business applications. Each specification will include the API definitions as
Object-oriented ABL (OOABL) interfaces, the expected behavior and other collateral
to sufficiently define the component.

Common Component Specification – Business Entity V1Business Entity Page 3
30/09/2016 17:20:00

1.2 Scope
This document describes the Business Entity Component of the Business Services
Layer as defined in the OpenEdge Reference Architecture. The specification defines
the API, expected behaviour and other collateral needed to successfully use and
implement a CCS compliant Business Entity.

The Business Entity is a standard component in which application developers can
implement business logic for accessing (read operations) and modifying (insertion,
update and deletion) a set of data (represented by a set of temp-tables in a
ProDataset) as well as implement additional operations related to the domain of the
Business Entity (operations that may for instance encapsulate specific read, data
manipulation and update operations).

This specification does NOT define interfaces between the Business Entity
component and a Data Access component. The OpenEdge Reference Architecture
(OERA) does recommend the separation of the Business Logic and Data Access that
these two types of components provide.

The CCSBE specification team members strongly recommend the use of Data
Access components for implementing the physical data access required by a
Business Entity as well. However, we have decided that we are not going to make
the implementation of a Data Access component (and thus the data access
functionality) outside of the Business Entity in a separate Data Access component
mandatory.

We are not going to specify the interfaces between Data Access and Business Entity
components as part of the Business Entity specification document. In the OpenEdge
Reference Architecture (OERA) only the Business Entity is supposed to be
interacting with the Data Access layer.

Common Component Specification – Business Entity V1Business Entity Page 4
30/09/2016 17:20:00

1.1 1.3 Definitions, Acronyms and Abbreviations
Business Service – Services specific to the purpose of the application.

CCS – Common Component Specification. (Chase & Elwell, 2016)

OEAA – OpenEdge Application Architecture. (Chase & Elwell, 2016)

OERA – OpenEdge Reference Architecture. (Ormerod, 2006)

Service – Self-contained unit of functionality

SOA – Service oriented architecture

Common Component Specification – Business Entity V1Business Entity Page 5
30/09/2016 17:20:00

1.4 References to external documents
Num. Title (Applicability & Reference) Author Date Issue
1 CCS Specification: OpenEdge Application

Architecture
Shelley B. Chase
Rom Elwell

February 2016

2 CCS Specification: Service Manager (work in
process)

TBD 2016

3 Defining The Openedge® Reference
Architecture - Common Infrastructure

Mike Ormerod August 2006

4 Overview of the OpenEdge Reference
Architecture

John Sadd January 2007 V1.0

Common Component Specification – Business Entity V1Business Entity Page 6
30/09/2016 17:20:00

1.5 Contents Overview
Section 1 is the introduction and includes a description of the project, applicable and
reference documents.

Section 2 provides the component’s overview.

Section 3 contains the component’s component descriptions.

Section 4 contains guidelines to implementers

Section 5 includes the component’s revision history, outstanding issues, and action
items

Common Component Specification – Business Entity V1Business Entity Page 7
30/09/2016 17:20:00

2 Component Overview
The Business Entity provides CRUD (create, read, update and delete) functionality to
the data structure (typically a ProDataset) that the Business Entity manages. The
Business Entity MAY further provide high level business functions through additional
custom methods.

It is mandatory that the Business Entity is implemented without knowledge of any
specific client user interface. Business Entities can be used on the Application Server
as well as in a fat client ABL session. It is mandatory that a Business Entities is
developed in such a way that it can be made accessible through a suitable Service
Interface component from any AppServer consumer as well as ABL GUI or GUI for
.NET clients.

The Interface to the updateData() method requires a ProDataset with before image
support (temp-tables defined with a BEFORE-TABLE) and activated change tracking.
Consumers not capable of providing a ProDataset with before image data require the
Service Interface component to transform the updataData() message to comply with
this requirement. The Business Entity is not required to provide alternative interfaces
to make changes to the data.

The data structure and capabilities of a Business Entity can be described through the
data catalog (originally implemented for the JSDO and OpenEdge mobile).

The Business Entity relies on the Service Interface component to translate between
an individual type of consumer and the interfaces of the Business Entity itself.

The CCBE spec ensures the Business Entity read operations (section 2.4) provide
the full functionality required for responding to the JSDO’s JPF (ablFilter, orderBy,
top and skip) request.

Common Component Specification – Business Entity V1Business Entity Page 8
30/09/2016 17:20:00

2.1 Component Description
The Business Entity is a Service in the sense of the Service Manager component.
The Business Entity implements the IService Interface. The Service Manager acts as
the factory for Business Entity components.

A Business Entity is implemented around a ProDataset definition. This ProDataset is
considered the primary data structure of the Business Entity used in the interface to
all read and update operations as described below.

The Business Entity provides three types of methods to its callers:
 Read operations

Read operations return a ProDataset to the caller. The caller MUST provide
information to the Business Entity that allows for data selection. The caller can
provide information about which tables of the Business Entity ProDataset should
be populated and data that is required to support paging (page size, page
number (through the number of records to skip), starting record identifier,
number of records to return).

 Update operations
Update (create, update, delete) operations of the Business Entity expect the
Business Entity ProDataset with changes as a parameter as well as an optional
additional parameter object. A primary function of updates is data validation.
Validation errors are expected to be reported to the caller using the error
attributes of the ProDataset/ProDataset buffers. As the Prodataset does only
support returning a single validation error message on a per record basis this
document defines how multiple error messages and additional error properties
MUST be encoded.

 Named operations
A frameworks Business Entity implementation MUST support named operations.
Named operations provide a suitable method of encapsulating business logic in
a Business Entity allowing multiple consumers to reuse this functionality. Named
operations MUST follow the following convention: These operations MUST be
implemented as public methods in the Business Entity. Those methods SHOULD
optionally be receiving a single ProDataset (not necessarily the Business Entity
primary ProDataset) as an INPUT or INPUT-OUTPUT or OUTPUT parameter
and optionally receive a request object. They return a response object as well as
the ProDataset through when passed in as an INPUT-OUTPUT or OUTPUT
parameter. As the ABL does not support delegates we can only require this
signature of named operations through convention in this specification and not
enforce it through a compiler verifiable definition.

All methods are expected to be called on their own through a Service Interface. The
Business Entity is not expected to rely on a sequence of calls by a consumer that
might be required to prepare the state of the Business Entity to be prepared for an
actual call. Exception to this rule is the initialize() method as required by the IService
interface (Service Manager specification) which will be called by the Service Manager
during the start-up of the Business Entity..

Furthermore, the Business Entity is not expected to keep any session or client
specific context between calls into the public methods of the Business Entity. All
session context specific data that a Business Entity might need to access SHOULD
be obtained from the Session Manager component during each request.

It is the responsibility of the Service Manager to define the life time of a Business
Entity as a business service component. Business Entities are by definition stateless

Common Component Specification – Business Entity V1Business Entity Page 9
30/09/2016 17:20:00

business components. The Business Entity MUST be implemented in a way that
allows the usage of a Business Entity component by different clients in a sequence of
AppServer requests in a stateless fashion to ensure the highest possible runtime
performance and scalability avoiding the need to load every business entity for each
request.

Business Entities are however allowed to maintain a cache of data that can improve
the runtime performance of the Business Entity. The Business Entity is responsible
for ensuring the life time and scope of any cached data, including if required
managing to switch between different tenants over multiple AppServer requests
(typically flushing any cache when a relevant context switch occurs).

Common Component Specification – Business Entity V1Business Entity Page 10
30/09/2016 17:20:00

2.2 Component Architecture

2.2.1 Ccs.Common.IService
Specification of this interface falls in the domain of the Service Manager specification.

2.2.2 Ccs.BusinessLogic.IBusinessEntity
The IBusinessEntity Interface extents the IService Interface as defined by the Service
Manager specification.

Each operation is implemented as a single method that is supposed to be invoked by
consumers through a Service Interface component. Most methods expose a
ProDataset as the parameter. While the read and update operations MUST be using
the same ProDataset structure the additional named operations MAY operate on a
different (more specialized ProDataset structure).

The IBusinessEntity interface only defines operations (methods) and no properties.
Business Entities are not expected to maintain any state between the invocation of
their operations.

Business Entities are not expected to require parameters passed to their constructor.
This cannot be enforced through an Interface definition but is a requirement of the
Service Manager component.

2.2.3 getDataset() method
The Business Entity MUST provide a method which returns an empty instance (no
data but schema) of its primary ProDataset.

This method is intended to be invoked by the data catalog to describe the data
structure. It is also intended for (more dynamic) consumers that may require to
receive a structure of the ProDataset as the primary message for interacting with the
Business Entity before reading or updating data.

This method does not require any input parameters.

The method is not intended to be called BY-REFERENCE. The caller of the
getDataset() method is responsible for cleaning up the ProDataset when no longer
required.

2.2.4 getData() method
Most efficient data retrieval is a key functional requirement of any Business Entity.
The getData() method will operate on a single request parameter object. This request
parameter object MUST provide all relevant query arguments as well as arguments
describing the amount of data expected by the caller and information about the set of
data requested.

The IGetDataRequest parameter object contains an array of IGetDataTableRequest
objects describing the request details for the requested temp-tables of the primary
ProDataset of the Business Entity.

METHOD PUBLIC IGetDataResponse getData (IGetDataRequest, OUTPUT
DATASET-HANDLE)

Common Component Specification – Business Entity V1Business Entity Page 11
30/09/2016 17:20:00

2.2.4.1 Filtering using an ABL query string

The Business Entity MUST support filtering using an ABL query string provided by
the caller. This query string MUST be provided in a form like

CustNum = 42

CustNum = 42 AND OrderStatus = “Ordered”

It is mandatory that those Query Strings are expressed against the fields and tables
of the Business Entities primary ProDataset. The Business Entity cannot expect
knowledge about the fields and tables present in the actual physical storage (typically
a database) from its consumer. When the Business Entity (or its Data Access object)
perform a mapping between the ProDataset schema and the schema of the physical
storage the Business Entity (or its Data Access object) is expected to map the
provided Query String for execution as well.

The Query String is provided for each requested table as part of the
IGetDataTableRequest interface. The Query String MAY be empty or unknown value
indicating that no filter is required or filter is provided using query predicates or as a
named query.

2.2.4.2 Filtering using an array of query predicates

As not every consumer of a Business Entity may be capable of providing a valid ABL
query string to the Business Entity the Business Entity MUST provide the capability
of filtering on an array of query predicates including the ability to provide nested
groups of query predicates.

A query predicate consists of

- the Join criteria that defines which boolean operator should be used to join the
predicate to its predecessor in the list. Valid values are defined by the
Ccs.BusinessLogic.JoinEnum (None, Not, And, AndNot, Or, OrNot). The values
of None or Not are only applicable to the first entry in a list.

- a field reference either in the form of “FieldName” or “TableName.FieldName”

- an Operator identified by the Ccs.BusinessLogic.QueryOperatorEnum
Enumaration

- a Value represented by a holder class or a list of Values represented by an array
holder class for the InRange or InList operators

The IGetDataTableRequest object provides the reference to an IQueryGroup
instance. The IQueryGroup is an array of IQueryEntry instances. Each IQueryEntry
instance is either a Query Group (with a Join criteria) or a Query Predicate as
described above.

This structure allows for flexible and practically unlimited nesting of Query
Predicates.

Common Component Specification – Business Entity V1Business Entity Page 12
30/09/2016 17:20:00

2.2.4.3 Filtering using a named query with parameters

For more complex queries it can be desired that the Business Entity itself (or its Data
Access component) build the actual query criteria. This is particularly useful when
query arguments might be a result of the session context or session state:

- TodaysOrders

- Yesterday’s orders of Customer 42

- Invoices of month May 2016

To support those queries, the Business Entity will expect an INamedQuery object as
part of the request parameter. The INamedQuery interface will consist of a Name
property that returns the Named Queries identified to the Business Entity as well as
an Array of Query Parameters (MAY have zero entries,i.o.W. EXTENT = ?). Each
parameter to a Named Query consists of an INamedQueryParameter instance with a

- Name property to identify the Parameter (CustNum, Month, Year)

- Value property that contains a reference to an ICharacterHolder, IDecimalHolder,
IDateHolder, … instance.

Named Querys MUST also support paging. The consumer is expected to provide
IGetDataTableRequest instances as part of the IGetDataRequest object that provide
the required paging properties.

2.2.4.4 Paging

A Business Entity MUST support paging (sometimes called batching) to optimize
data retrieval to a consumer. Within this specification we distinguish between paging
based on row numbers and paging based on a row identifier with a value meaningful
to the Business Entity. A row number is provided as an integer value and the record
identifier is provided as a character value, typically received from the Business Entity
in a previous call.

The Business Entity MUST support returning the data in flexible page sizes. The
number of records (NumRecords property of the table request parameter) can be
provided by the consumer. When the consumer provides NumRecords as 0 the
Business Entity is expected to return all (remaining) records to the caller. When the
consumer provides NumRecords as ? the Business Entity is expected to use a
reasonable default value for NumRecords (can be 0).

If a specific consumer is incapable of handling the unknown value (?) for
NumRecords the Service Interface is responsible to provide a suitable alternative
representation of the “default number of rows” NumRecords setting.

When the caller provides a value for the Skip property of the request parameter the
Business Entity is expected to skip the number of records and starts returning the
resulting records from Skip + 1. A consumer can start requesting the first page with a
value of NumRecords = 100 and Skip = 0 and the second page of records with
NumRecords = 100 and Skip = 100.

Alternatively, the client can use paging based on record identifiers. Record identifiers
can consist of record key values or actual database rowid’s (e.g. provided by a
DATA-SOURCE RESTART-ROWID function). Generally, a consumer would not
need to interpret this value in any way. Paging is achieved in the following way:

Common Component Specification – Business Entity V1Business Entity Page 13
30/09/2016 17:20:00

A consumer requests the first 100 records by providing NumRecords = 100 and the
PagingContext = “” or ?. Using the response object, the Business Entity will also
return the record identifier for the follow up call in the NextPagingContext property. In
order to receive the next 100 records, the caller will call again into the Business
Entity providing the value of the previous responses NextPagingContext as the value
for the PagingContext property of the follow up request parameter. When a getData()
request does return the unknown value for the NextPagingContext the Business
Entity indicates the caller that there is no further data available.

When paging is requested based on record identifiers the Business Entity MUST
support negative values for NumRecords to support batching in backwards direction.
When a negative value for NumRecords is provided without a PagingContext value
the Business Entity MUST return the very last complete set of resulting records (or
fewer records when the query selection does not return enough rows to fill a
complete batch).

When a negative value for NumRecords is provided together with a PagingContext
the Business Entity is expected to return the complete set of records prior to the
previously received set (or fewer record when the query selection does not return
enough rows to fill another complete set).

The ability to specify the Tables of a request in combination with the NumRecords
property allows a user interface to use an Order Business Entity to retrieve a list of all
orders without all other details and a single Order Records with Order Line and Item
information for a detail view.

2.2.4.5 Custom Parameters/Request Context

The IGetDataRequest parameter to the GetData methods provides
CustomParameter object. This object is of any type and MAY be used to provide
further (custom) instructions or information to the Business Entity.

2.2.4.6 Response Object

The response object of the getData() method provides context information for
required for retrieving the next or previous set of data from the Business Entity.

The IGetDataResponse provides an array of IGetDataTableResponse instances that
return the name of the temp-table that is described by the instance together with the

- NextPagingContext

- PreviousPagingContext

used for paging as described above

The IGetDataResponse object further provides a reference to an optional custom
response object.

2.2.5 getResultCount() method
The getResultCount method is used by consumers (like the JSDO/Kendo UI) that
navigate data in a paging fashion and require to receive the number of expected
records before (or in parallel to) a getData request.

As the ABL and the OpenEdge database are not particularly strong in evaluating the
total number of results of an arbitrary query the Business Entity MAY return a data
guess or cached and potentially no longer accurate response to the consumer.

Common Component Specification – Business Entity V1Business Entity Page 14
30/09/2016 17:20:00

It’s the joint responsibility of a framework provider that provides a tool set for
implementing Business Entities and the developer implementing actual Business
Entity components to ensure that the getResultCount() method returns a result in a
way that does not stress the application performance in an unacceptable way.

Knowing the total number of records is typically only required for good user
experience and then a guess (over 10,000 records which is provided in under a
second) typically provides better user experience than an exact result that may
require minutes to be calculated.

The count method will use the same parameter object as the getDataMethod and will
return the number of matching records for every requested table.

PUBLIC IGetResultCountResponse getResultCount (IGetDataRequest) .

Details on the IGetDataRequest parameter are described in section 2.2.4 and 3.4.

The result of the method contains an Array of IGetTableResultCountResponse object
instances providing the result count per requested table (in the same order as the
requested tables) using the following information:

- Table Name

- Result Count

- Exact Result (to distinguish guessed or caches results)

The getResultCount method is expected to throw an error if counting the query result
is not reasonable and would risk a serious negative impact on the system
performance.

2.2.6 updateData() method
The Business Entity MUST provide a method which allows a consumer to send an
instance of the primary ProDataset of the Business Entity with modified records to
process and typically persist in a database or other type of storage system.

The Business Entity will process modified records only (ROW-STATE = ROW-
DELETED, ROW-MODIFIED or ROW-CREATED) and ignore unmodified rows
(ROW-STATE = ROW-UNMODIFIED).

This requires that code invoking the ProDataset updateData() method is capable of
handling ProDatasets with before-image. It’s the responsibility of the Service
Interface to provide a ProDataset that complies with this requirement when routing
requests of consumers that are not capable of providing a ProDataset with before-
image information.

METHOD PUBLIC Progress.Lang.Object updateData (INPUT-OUTPUT DATASET <
Primary ProDataset >) .

Common Component Specification – Business Entity V1Business Entity Page 15
30/09/2016 17:20:00

and

METHOD PUBLIC Progress.Lang.Object updateData (INPUT-OUTPUT DATASET <
Primary ProDataset >, poRequest AS IUpdateDataRequest) .

Return value An object that MAY be used to return
additional data to the caller. SHOULD
be serializable to allow sending to
various consumers.

Primitive response values MUST be
wrapped in a holder object.

Can be unknown value.

Primary ProDataset The ProDataset to be used as
parameter to this method. It’s used for
INPUT and OUTPUT. As the INPUT it’s
expecting a ProDataset with modified
records (see above). On the OUTPUT
those records MAY have the ERROR
and ERROR-STRING attributes set.

The Business Entity MAY also return
more or different records to the caller.
In a Business Entity with Customer and
Salesrep updating the Customer’s
Salesrep field MAY cause the Business
Entity to return the updated Customer
and the new matching Salesrep to the
caller.

SHOULD be passed BY-REFERENCE

IUpdateDataRequest An optional object with request data for
the method. The IUpdateDataRequest
object provides a property describing
the suggested CommitScope and a
custom parameter object that might be
used by the Business Logic to control
custom behaviour.

The IUpdateDataRequest interface contains a CommitScope property. The property
returns a value of the CommitScopeEnum and allows the consumer to suggest or a
hint to the business entity about the transaction scope while processing multiple
modified records. Supported values are:

All All records in the Dataset are
processed in a single database
transaction

Row (Default) One database transaction per table row

Common Component Specification – Business Entity V1Business Entity Page 16
30/09/2016 17:20:00

Table One database transaction for all
records in a single table

Nested One database transaction per parent
row and its child table and all grand-
child records.

The Business Entity implementation is allowed to override and ignore this setting as
the Business Entity and its potentially used Data Access object are solely responsible
for the transaction scope.

The IUpdateDataRequest object further contains a custom request object which is
intended to be used for additional business logic implementation specific request
details.

Validation messages are returned using the ERROR and ERROR-STRING attributes
of the ProDataset member records. When at least one record is marked with
ERROR, the ProDataset MUST be marked with ERROR as well.

See further information on the section 2.5 about Component Error Handling in this
document.

The ProDataset can be passed BY-REFERENCE from the caller to the Business
Entity.

2.2.7 Named operations
The Business Entity MAY contain other custom public methods.

These methods encapsulate business logic beyond reading and updating of values
(CRUD operations). While shipping an order might just require to update the
OrderStatus and ShippingDate fields of the Order record - it is considered as bad
practice to implement the shipment of an order in that way as this would require too
much knowledge about shipping an order on the side of the consumer. Encapsulating
this in a custom method will also allow to reuse exact the same logic for shipping an
order from any consumer – including a unit test environment.

Examples for custom methods of a Business Entity:

- shipOrder

- cancelOrder

- customerCreditCheck

- bulkProcessOrders

- getInitialValues

Common Component Specification – Business Entity V1Business Entity Page 17
30/09/2016 17:20:00

Custom public method matching the requirements described in this section are called
“named operations”. The pattern of the named operations described here will simplify
exposing these methods through a generic service interface and describing them in
the service catalog.

Named operations SHOULD optionally receive a ProDataset parameter (not
necessarily the Primary ProDataset of the Business Entity) as an INPUT, INPUT-
OUTPUT or OUTPUT parameter. Additionally, named methods MAY receive a single
request object as an input parameter.

The signature for these named operations MUST be:

METHOD PUBLIC <ResponseObjectType> <NamedOperationName>
({INPUT|OUTPUT|INPUT-OUTPUT DATASET < ProDataset>} {, poRequest AS
<RequestObjectType>}) .

ResponseObjectType An optional object with response data
of the method. SHOULD be serializable
to allow sending to various consumers.

Primitive response values MUST be
wrapped in a holder object.

Can be unknown value.

NamedOperationName The actual name of the method,
typically consisting of a verb and a
noun, SHOULD be descriptive

Primary ProDataset The optional ProDataset parameter to
be used with this method. It’s up to the
implementer of the custom method to
define the ProDataset parameter either
as INPUT or OUTPUT or INPUT-
OUTPUT.

Can be passed BY-REFERENCE

RequestObjectType An optional object with request data for
the method. SHOULD be serializable to
allow receiving from various
consumers.

Primitive request values MUST be
wrapped in a holder object.

A Business Entity that supports named operations MUST implement the
ISupportNamedOperations Interface. This interface requires the
getNamedOperations() method which returns an Array with the names of the
invokable named operations.

Common Component Specification – Business Entity V1Business Entity Page 18
30/09/2016 17:20:00

2.3 Component Package Definition
The Business Entity Interface and the supporting interfaces (for request and
response objects) are defined in the Ccs.BusinessLogic interface.

Common Component Specification – Business Entity V1Business Entity Page 19
30/09/2016 17:20:00

2.4 Component Property Data and Organization
The Business Entity is designed around its primary ProDataset. This primary
ProDataset is returned by the getData() and getDataset() methods and expected as
the parameter for the updateData() methods.

The data catalog originally implemented to support JSDO based clients describes
this ProDataset.

Named operations MAY use different ProDatasets in their interface.

Common Component Specification – Business Entity V1Business Entity Page 20
30/09/2016 17:20:00

2.5 Component Error Handling
In any situation where a Business Entity method is not able to perform it’s task it is
expected to throw errors to its caller. The error message MUST state clearly the
nature of the error preventing the Business Entity to perform the task and the error is
expected to provide useful additional properties for analysis and logging. It is strongly
advised to throw error objects with error messages and not with the legacy
ReturnValue (e.g. using the AppError constructor with a CHARACTER and an
INTEGER parameter instead of just a single CHARACTER parameter).

In the current revision the CCSBE specification will not enforce different error classes
or interfaces to be used for different error scenarios.

Data Validation during update operations is considered an application function and a
key behaviour of the (Updatable) Business Entity. As such validation errors (the
consumer passes data for update to the Business Entity that does not match the
requirements of the Business Logic such as empty fields, data values out of range,
foreign key violations etc.) are not expected to be thrown to the caller. Validation
error are not runtime errors; they are part of the business logic functionality of a
Business Entity. These validation errors are returned to the caller using the
mechanisms of ProDataset member records (the ERROR and ERROR-STRING
attribute of the member record as well as the ERROR attribute of the ProDataset
itself).

Validation messages returned through the ERROR-STRING attribute of the temp-
table records are recommended to be encoded in such a way that the Message
Manager (defined by CCS later) is able to return a localized error message to the
consumer.

Business Entity implementation that should remain usable outside of a full blown
CCS implementation SHOULD be prepared to return validation messages directly in
a human understandable form as the Message Manager of the CCS may not be
available.

As multiple separate validation messages (for different fields) MAY need to be
returned those messages are expected to be returned as a JSON array. Each object
in the JSON array MUST provide the following properties if applicable:

FieldName The name of the field that caused this
error. Leave blank if the error is caused
by the whole record.

MessageStrings The JSON string array of full
unencoded error messages, one string
per line.

MessageId The numeric identifier of an error
message

MessageGroup The error message group

SubstitutionValues The JSON string array of values to
substitute placeholder (&1, &2, &3, …)
in the message template identified by
MessageId and MessageGroup

Common Component Specification – Business Entity V1Business Entity Page 21
30/09/2016 17:20:00

Severity A string with is either “Info”, “Warning”
or “Error”

The Business Entity SHOULD either set the MessageId and MessageGroup or the
MessageStrings property in the message structure. MessageId and MessageGroup
are typically passed on the client or the service interface to a Message Manager
component for retrieving a localized message.

If one or more JSON Array elements for MessageStrings is provided the MessageId,
MessageGroup and SubstitutionValues MAY be left empty.

The MessageId (message number) and MessageGroup are used to retrieve a
message template string from a Message Manager.

Empty JSON properties are not supposed to be contained in the ERROR-STRING
property of the ProDataset member record.

Common Component Specification – Business Entity V1Business Entity Page 22
30/09/2016 17:20:00

2.6 Dependencies and interactions with other OERA common standards

The Business Entity is a Service as defined by the Service Manager spec.

Common Component Specification – Business Entity V1Business Entity Page 23
30/09/2016 17:20:00

3 Component Interfaces and Classes
All parameter and return types that are documented with no package name are members of the
Ccs.BusinessLogic package.

Common Component Specification – Business Entity V1Business Entity Page 24
30/09/2016 17:20:00

3.1 Ccs.BusinessLogic.IBusinessEntity
Inherits Ccs.Common.IService.

This is the main interface for a Business Entity. Is describes the mandatory methods
for a read-only Business Entity. The interface inherits from the IService Interface (see
specification of the Service Manager) as every Business Entity MUST be
manageable by the Service Manager component.

USING Ccs.Common.* FROM PROPATH .
USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IBusinessEntity
 INHERITS IService:

 /*--
 Purpose: Returns an empty instance of the primary ProDataset to the caller
 Notes: Used for catalog generation or initialization of dynamic user
 interfaces etc.
 @param phDataset OUTPUT Dataset (not intended to be called BY-REFERENCE)
 --*/
 METHOD PUBLIC VOID getDataset (OUTPUT DATASET-HANDLE phDataset).

 /*--
 Purpose: Performs a read request
 Notes:
 @param poRequest The IGetDataRequest instance with the getData request
parameters
 @param phDataset OUTPUT Dataset
 @return The IGetDataResponse instance
 --*/
 METHOD PUBLIC IGetDataResponse getData (poRequest AS IGetDataRequest,
 OUTPUT DATASET-HANDLE phDataset).

 /*--
 Purpose: Returns the count of the total number of result records or a
 Guess of the result count to the caller
 Notes:
 @param poRequest The IGetDataRequest instance with the getResultCount
 request parameters
 @return The IGetResultCountResponse instance
 --*/
 METHOD PUBLIC IGetResultCountResponse getResultCount (poRequest AS
IGetDataRequest).

END INTERFACE.

3.1.1 Public instance methods

Name getDataset()

Common Component Specification – Business Entity V1Business Entity Page 25
30/09/2016 17:20:00

Description Returns an empty instance of the primary ProDataset to the caller.
This method can be invoked for data catalog generation or the
initialization of dynamic user interfaces etc..

The caller of this method is responsible for disposing the Dataset
from memory when no longer needed.

Return Type Void

Parameters OUTPUT DATASET-HANDLE An Empty instance with a copy
of the Business Entity primary
ProDataset

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Name getData()

Description Performs a read request and returns a ProDataset with the
resulting data

Return Type IGetDataResponse

Parameters INPUT IGetDataRequest The request instance that
contains all parameters to the
getData call. The
IGetDataRequest instance does
also provide a custom
parameter object instance. The
definition of this custom
parameter object is up to the
implementer of the Business
Entity.

OUTPUT DATASET-HANDLE The Business Entity primary
ProDataset with the data
matching the IGetDataRequest.
Can be called BY-REFERENCE

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Name getResultCount()

Description Returns the count of the total number of result records or a guess
of the result count to the caller.

The implementation MUST provide a well performing
implementation.

Return Type IGetResultCountResponse

Parameters INPUT IGetDataRequest The request instance that
contains all parameters to the

Common Component Specification – Business Entity V1Business Entity Page 26
30/09/2016 17:20:00

getData call. The
IGetDataRequest instance does
also provide a custom
parameter object instance. The
definition of this custom
parameter object is up to the
implementer of the Business
Entity.

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Name initialize() Inherited from Ccs.Common.IService

Description Initialize the Business Entity

Return Type Void

Parameters None

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Common Component Specification – Business Entity V1Business Entity Page 27
30/09/2016 17:20:00

3.2 Ccs.BusinessLogic.IUpdatableBusinessEntity
Inherits Ccs.BusinessLogic.IBusinessEntity

Interface for a Business Entity that provides update capabilities
(create/delete/modify) to its consumers.

INTERFACE Ccs.BusinessLogic.IUpdatableBusinessEntity
 INHERITS IBusinessEntity:

 /*--
 Purpose: Stores data modifications in the persistent storage (typically a
 database)
 Notes: The output dataset will contain validation error messages in the
 ERROR-STRING attributes of the record buffers. Records with
 Errors will also have the ERROR attribute set to TRUE. When at
 least a single record has a validation error, the ERROR attribute
 of the ProDataset is assigned to TRUE as well
 @param phDataset INPUT-OUTPUT Dataset containing modified records to be
 processed (should be passed BY-REFERENCE)
 @param poUpdateDataRequest The optional request object that allows to
 provide custom instructions to the method
 @return An optional response object returned by the method
 --*/
 METHOD PUBLIC Progress.Lang.Object updateData
 (INPUT-OUTPUT DATASET-HANDLE phDataset,
 poUpdateDataRequest AS IUpdateDataRequest).

END INTERFACE.

3.2.1 Public instance methods

Name updataData()

Description Stores Data Modifications in the persistent storage (typically a
database).

The consumer can provide a hint for the transaction scope to
be used by the Business Entity (see the IUpdataDataRequest
interface below). The Business Entity is in full control of the
transaction scope and MAY ignore the hint provided by the
consumer completely.

The Business Entity MAY return an arbitrary response object
from the updateData() method. This definition of this
response object is up to the implementer of a specific
Business Entity

Return Type Progress.Lang.Object An arbitrary response object

Parameters INPUT-OUTPUT DATASET-HANDLE The ProDataset
instance with
modifications,
MAY be passed
BY-

Common Component Specification – Business Entity V1Business Entity Page 28
30/09/2016 17:20:00

REFERENCE.
The Business
Entity will update
the ERROR and
ERROR-STRING
attributes of the
ProDataset and
the affected
ProDataset temp-
table buffer
(record) in case
of validation
errors. See
section 2.5for
details.

INPUT IUpdateDataRequest The request
object that
provides the
proposed commit
scope and an
arbitrary request
object. The
purpose of the
arbitrary request
object is up to the
implementer of
the actual
Business Entity.

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

Common Component Specification – Business Entity V1Business Entity Page 29
30/09/2016 17:20:00

3.3 Ccs.BusinessLogic.ISupportNamedOperations
Interface for Business Entities that support Named Operations that are exposed to
consumers.

Named operations are PUBLIC instance method of the Business Entity with custom
functionality (e.g. ShipOrder, ValidateCustomer). The purpose of including the named
operations in the Business Entity specification document is to provide a set of
recommended signatures for named operations.

The Interface can be implemented by IBusinessEntity and IUpdatableBusinessEntity
instances. As the Interface does not inherit from the IBusinessEntity interface, the
interface can be used by other Business Logic objects (e.g. Business Tasks as well).

INTERFACE Ccs.BusinessLogic.ISupportNamedOperations:

 /*--
 Purpose: Returns the names of the supported named operations
 Notes: Used for catalog generation and an entry point into reflection
 @return The array with the names of the invokable named operations
 --*/
 METHOD PUBLIC CHARACTER EXTENT getNamedOperations ().

END INTERFACE.

3.3.1 Public instance methods

Name getNamedOperations()

Description Returns the names of the suppported named operations.
Used for catalog generation and an entry point into reflection.

Return Type CHARACTER EXTENT The array with the names of
the Named operations

Exceptions Progress.Lang.SysError

Progress.Lang.AppError

3.3.2 Named Operations

Named Operations are not documented as part of the Interfaces section in this
document as the ABL lacks the capabilities of describing those methods through
delegate types. See section 2.2.7 for details on the suggested signatures for named
operations.

Common Component Specification – Business Entity V1Business Entity Page 30
30/09/2016 17:20:00

3.4 Ccs.BusinessLogic.IGetDataRequest

Interface for the request object for the IBusinessEntity’s getData and getResultCount
methods.

As the IGetDataRequest and IGetDataTableRequest Interface use a number of
EXTENT properties, it is recommended that implementers consider providing
constructors or helper methods that simplify passing a reasonable amount of values
to the array properties on the fly.

INTERFACE Ccs.BusinessLogic.IGetDataRequest:

 /*--
 Purpose: Returns the custom parameter object
 Notes: May be used to provide further instructions or information to the
 Business Entity while executing the GetData request
 --*/
 DEFINE PUBLIC PROPERTY CustomParameter AS Progress.Lang.Object NO-UNDO
 GET.

 /*--
 Purpose: Returns the named query instance
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY NamedQuery AS INamedQuery NO-UNDO
 GET.

 /*--
 Purpose: Returns the Table requests
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY TableRequests AS IGetDataTableRequest EXTENT NO-UNDO
 GET.

END INTERFACE.

3.4.1 Public instance properties

Name CustomParameter

Description A custom parameter object to be used by the Business Entity. A
consumer might for instance use this to indicate if an expensive
calculated field should be populated or not.

Type Progress.Lang.Object

Getter Public

Setter Not defined

Unknown This property value might be unknown. Indicating that no custom
instructions are provided by the consumer.

Common Component Specification – Business Entity V1Business Entity Page 31
30/09/2016 17:20:00

Name NamedQuery

Description An INamedQuery instance providing a named query to the Business
Entity. Named Queries can be combined with TableRequests. But
this is not mandatory. A Business Entity might completely ignore the
TableRequests when a known named query is references. A
Business Entity is expected to throw an error with a meaningful error
message, when the consumer provides a reference to an unknown
named query or does provide unknown parameters to a named
query

Type INamedQuery

Getter Public

Setter Not defined

Unknown This property value might be unknown. Indicating that no named
query is invoked by the consumer.

Name TableRequests

Description A array of ITableRequest instances describing the Tables and their
selection criteria of this request

Type ITableRequest EXTENT

Getter Public

Setter Not defined

Unknown The extent of this property value might be unknown. Indicating that
no ITableRequest’s are provided to the getData or getResultCount
method. When no NamedQuery is provided the Business Entity is
expected to return a default response. When the extent of this
property is greater than zero, all values MUST be valid
ITableRequest instances.

Common Component Specification – Business Entity V1Business Entity Page 32
30/09/2016 17:20:00

3.5 Ccs.BusinessLogic.IGetDataTableRequest

Interface for the TableRequest property of the request object for the IBusinessEntity’s
getData and getResultCount methods.

As the IGetDataRequest and IGetDataTableRequest Interface use a number of
EXTENT properties, it is recommended that implementers consider providing
constructors or helper methods that simplify passing a reasonable amount of values
to the array properties on the fly.

Common Component Specification – Business Entity V1Business Entity Page 33
30/09/2016 17:20:00

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IGetDataTableRequest:

 /*--
 Purpose: Returns the paging context
 Notes: Used for Paging. This value typically consists of record
 identifiers
 (e.g. DATA-SOURCE ROWID retrieved by the RESTART-ROWID function
 Of the previous call into IBusinessEntity:GetData or other data
 Required by the Business Entity to build the next batch of data).
 The value passed in is the value of the NextBatchingContext
 Property of the IGetDataTableResponse for the table
 --*/
 DEFINE PUBLIC PROPERTY PagingContext AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the number of records requested by the caller of the
 Business Entity getData method
 Notes: Used for Paging. When the value is 0, the business
 entity is expected to return all (remaining) records. When the
 value is ? the business entity is expected to return a reasonable
 default number of records to the caller. Negative values indicate
 paging in backwards direction is requested.
 --*/
 DEFINE PUBLIC PROPERTY NumRecords AS INT64 NO-UNDO
 GET.

 /*--
 Purpose: Returns the abstract query defintion for this request
 Notes: Typically used as an alternative to the QueryString
 --*/
 DEFINE PUBLIC PROPERTY QueryDefinition AS IQueryDefinition NO-UNDO
 GET.

 /*--
 Purpose: Returns the Query String for this table
 Notes: Query Strings must be expressed using the fields of the temp-
 table. It’s the task of the Business Entity or Data Access class
 to translate the Query String into the form understood by the
 actual DBMS in case field names require mapping etc.
 Query Strings must be provided in the following format
 CustNum = 42
 CustNum = 42 AND OrderStatus = “Ordered”
 --*/
 DEFINE PUBLIC PROPERTY QueryString AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the number of records to skip
 Notes: Used for Paging. Typically the value of (page# - 1) * NumRecords
 Is passed in when requesting a certain page of result records
 --*/
 DEFINE PUBLIC PROPERTY Skip AS INT64 NO-UNDO
 GET.

Common Component Specification – Business Entity V1Business Entity Page 34
30/09/2016 17:20:00

 /*--
 Purpose: Returns the name of the ProDataset Table
 Notes: Identifies the table this IGetDataTableRequest belongs to
 --*/
 DEFINE PUBLIC PROPERTY TableName AS CHARACTER NO-UNDO
 GET.

END INTERFACE.

3.5.1 Public instance properties

Name PagingContext

Description When the consumer provides a value for the PagingContext the
Business Entity is expected to return the resulting records relatively
to this PagingContext. Typically, for the PagingContext the value of
the NextPagingContext or PreviousPagingContext of the previous
getData() call is provided.

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value might be unknown or empty. Indicating that the
first set matching the selection criteria is requested.

Name NumRecords

Description Defines the number of records requested by the caller of the
Business Entity getData() method, used for Paging. When the value
is 0, the business entity is expected to return all (remaining) records.
When the value is ? the business entity is expected to return a
reasonable default number of records to the caller. Negative values
indicate that backwards paging is requested.

Type INT64

Getter Public

Setter Not defined

Unknown This property value might be unknown. See Description for details.

Common Component Specification – Business Entity V1Business Entity Page 35
30/09/2016 17:20:00

Name QueryDefinition

Description Provides an abstract query definition consisting of a list of potentially
nested query predicates and a list of sort criteria. The
QueryDefinition must be used as an alternative to the QueryString
property.

Type IQueryDefinition

Getter Public

Setter Not defined

Unknown This property value might be unknown. Indicating that no abstract
query definition is provided for the request.

Name QueryString

Description Provides an ABL query string to the Business Entity getData()
request. The query string must be expressed using the field names
of the ProDataset temp-table (with no table prefix). The QueryString
must be used as an alternative to the QueryDefinition property.

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value might be unknown. Indicating that no query
string is provided by the consumer.

Name Skip

Description Returns the number of records to skip with this request. Used for
Paging as an alternative to the PagingContext. Typically the value of
(page# - 1) * NumRecords is passed in when requesting a certain
page of result records

Type INT64

Getter Public

Setter Not defined

Unknown This property value might be unknown or zero. Indicating that no
records should be skipped or the PagingContext is set.

Common Component Specification – Business Entity V1Business Entity Page 36
30/09/2016 17:20:00

Name TableName

Description Identifies the table this IGetDataTableRequest belongs to. This
must be a valid name of a ProDataset member table.

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value must not be unknown or empty.

Common Component Specification – Business Entity V1Business Entity Page 37
30/09/2016 17:20:00

3.6 Ccs.BusinessLogic.IQueryDefinition

The Ccs.BusinessLogic.IQueryDefinition interface provides the foundation of an
abstract query definition.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IQueryDefinition:

 /*--
 Purpose: Returns the list of query predicates or query groups for this
 Query definition
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY QuerySelection AS IQueryEntry NO-UNDO
 GET.

 /*--
 Purpose: Returns the list of query sort entries
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY QuerySort AS IQuerySortEntry EXTENT NO-UNDO
 GET.

END INTERFACE .

3.6.1 Public instance properties

Name QuerySelection

Description Provides the reference to the query selelection as an IQueryEntry
reference. The Query Selection will reference either an
IQueryGroup instance or a single IQueryPredicate

Type IQueryEntry (common base type of IQueryGroup and
IQueryPredicate)

Getter Public

Setter Not defined

Unknown This property value might be unknown or empty. Indicating that the
consumer provides no query selection but only query sort criteria.

Name QuerySort

Description Returns the list of query sort entries requested by the consumer

Type IQuerySortEntry EXTENT

Getter Public

Common Component Specification – Business Entity V1Business Entity Page 38
30/09/2016 17:20:00

Setter Not defined

Unknown This property value might be unknown. Indicating that the consumer
provides no query sort but only query selection criteria.

Common Component Specification – Business Entity V1Business Entity Page 39
30/09/2016 17:20:00

3.7 Ccs.BusinessLogic.IQueryEntry

Common base type for IQueryGroup and IQueryPredicate.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IQueryEntry:

 /*--
 Purpose: Returns the logical operator that shold be used to join this
 query entry to its predecessor in the current list
 Notes: The value of None is only supported for the first entry
 --*/
 DEFINE PUBLIC PROPERTY Join AS JoinEnum NO-UNDO
 GET.

END INTERFACE .

3.7.1 Public instance properties

Name Join

Description Provides the reference to the Join criteria (logical operator) required
to join the current query entry to its predecessor in a IQueryGroup.
The values of None or Not MAY only be used for the first entry in a
list.

Type JoinEnum

Getter Public

Setter Not defined

Unknown This property value must not be unknown.

Common Component Specification – Business Entity V1Business Entity Page 40
30/09/2016 17:20:00

3.8 Ccs.BusinessLogic.IQueryGroup
Inherits Ccs.BusinessLogic.IQueryEntry.

Represents a list of query predicates or nested query groups.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH.

INTERFACE Ccs.BusinessLogic.IQueryGroup
 INHERITS IQueryEntry:

 /*--
 Purpose: Returns the array of query predicates and nested query groups
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Entries AS IQueryEntry EXTENT NO-UNDO
 GET.

END INTERFACE.

3.8.1 Public instance properties

Name Entries

Description Provides the list of query entries represented by this IQueryGroup.
Every query entry MAY either by an IQueryPredicate or a nested
IQueryGroup. The Join property of each query entry provides the
Boolean operator to use between an entry and its predecessor in
the list. The Join values of None or Not are only allows for the first
entry in the list.

Type IQueryEntry EXTENT

Getter Public

Setter Not defined

Unknown This property value MUST not be unknown. The array must contain
at least two entries (when only one criteria is required, an
IQueryPredicate should be used). Every element in the array must
be a valid object reference.

Common Component Specification – Business Entity V1Business Entity Page 41
30/09/2016 17:20:00

3.9 Ccs.BusinessLogic.IQueryPredicate
Inherits Ccs.BusinessLogic.IQueryEntry.

Represents a single query criteria for a single field.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Ccs.Common.Support.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IQueryPredicate
 INHERITS IQueryEntry:

 /*--
 Purpose: Returns the name of the field for this query predicate
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY FieldName AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the operator for this query predicate
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Operator AS QueryOperatorEnum NO-UNDO
 GET.

 /*--
 Purpose: Returns a single value for this query predicate
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Value AS IPrimitiveHolder NO-UNDO
 GET.

 /*--
 Purpose: Returns a list of values for this query predicate
 Notes: Used by the InRange and InList operators
 --*/
 DEFINE PUBLIC PROPERTY Values AS IPrimitiveArrayHolder NO-UNDO
 GET.

END INTERFACE.

3.9.1 Public instance properties

Name FieldName

Description Returns the field name this IQueryPredicate provides selection
criteria for.

Type CHARACTER

Getter Public

Setter Not defined

Common Component Specification – Business Entity V1Business Entity Page 42
30/09/2016 17:20:00

Unknown This property value must not be unknown. It must provide a value
temp-table field name.

Name Operator

Description Returns the Operator for this IQueryPredicate

Type QueryOperatorEnum

Getter Public

Setter Not defined

Unknown This property value must not be unknown.

Name Value

Description Returns a single value for this query predicate. The Value cannot be
used for InRange or InValue operators. The primitive holders are
used as an alternative to an “ANY-TYPE” parameter type.

Type Ccs.Common.Support.IPrimitiveHolder

Getter Public

Setter Not defined

Unknown This property value might be unknown for the InRange or InValue
operator. All other operators require the use of a Value.

Name Values

Description Returns a list of values for this query predicate. Used by the
InRange and InList operators. The primitive array holders are used
as an alternative to an “ANY-TYPE” parameter type.

Type Ccs.Common.Support.IPrimitiveArrayHolder

Getter Public

Setter Not defined

Unknown This property value might be unknown except for the InRange or
InValue operator.

Common Component Specification – Business Entity V1Business Entity Page 43
30/09/2016 17:20:00

3.10 Ccs.BusinessLogic.IQuerySortEntry
Describes a single sort criteria for an abstract query definition.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IQuerySortEntry:

 /*--
 Purpose: Returns the name of the field for this query sort entry
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY FieldName AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the sort order for this query sort entry
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY SortOrder AS SortOrderEnum NO-UNDO
 GET.

END INTERFACE .

3.10.1 Public instance properties

Name FieldName

Description Returns the field name this IQuerySortEntry instance provides sort
criteria for.

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value must not be unknown. It must provide a value
temp-table field name.

Name SortOrder

Description Returns the sort order for this IQuerySortEntry

Type SortOrderEnum

Getter Public

Setter Not defined

Unknown This property value must not be unknown.

Common Component Specification – Business Entity V1Business Entity Page 44
30/09/2016 17:20:00

3.11 Ccs.BusinessLogic.JoinEnum

Non-Flagged enumeration of boolean operators used to join multiple query entries in
a list (query group). Used for the Join property of the IQueryEntry interface.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

ENUM Ccs.BusinessLogic.JoinEnum:

 DEFINE ENUM None /* For the first entry in a list */
 Not /* For the first entry in a list */
 And
 AndNot
 Or
 OrNot
 .
END ENUM .

3.11.1 Enum members

None Applicable to the first entry in a list only. Indicates that no negation of the
entry is required.

Not Applicable to the first entry in a list only. Indicates that boolean negation of
the entry is required.

Ant Applicable from the second entry in a list on only. Indicates that the
boolean AND operator is required.

AntNot Applicable from the second entry in a list on only. Indicates that the
boolean AND NOT operator is required.

Or Applicable from the second entry in a list on only. Indicates that the
boolean OR operator is required.

OrNot Applicable from the second entry in a list on only. Indicates that the
boolean OR NOT operator is required.

Common Component Specification – Business Entity V1Business Entity Page 45
30/09/2016 17:20:00

3.12 Ccs.BusinessLogic.QueryOperatorEnum

Non-Flagged enumeration of query operators used to specify an IQueryPredicate
instance.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

ENUM Ccs.BusinessLogic.QueryOperatorEnum:

 DEFINE ENUM /* Operators requiring a single value */
 Eq
 Begins
 Contains
 Matches
 Ge
 Gt
 Le
 Lt

 /* Operators requiring a list of values */
 InList
 InRange
 .
END ENUM .

3.12.1 Enum members

Eq Perform an equality match with the primitive value referenced by the
Value property.

Begins Perform a begins match with the primitive value referenced by the Value
property.

Contains Perform a contains match with the primitive value referenced by the Value
property (typically requires a word index on the RDBMS).

Matches Perform a matches match with the primitive value referenced by the Value
property.

Ge Perform a greater or equal match with the primitive value referenced by
the Value property.

Gt Perform a greater than match with the primitive value referenced by the
Value property.

Le Perform a less or equal match with the primitive value referenced by the
Value property.

Lt Perform a less than match with the primitive value referenced by the
Value property.

Common Component Specification – Business Entity V1Business Entity Page 46
30/09/2016 17:20:00

InList Perform a InList match with the list of primitive values referenced by the
Values property.

InRange Perform a InRange match with the list of primitive values (typically exactly
two) referenced by the Values property.

Common Component Specification – Business Entity V1Business Entity Page 47
30/09/2016 17:20:00

3.13 Ccs.BusinessLogic.SortOrderEnum

Non-Flagged enumeration of sort order used to specify an IQuerySortEntry instance.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

ENUM Ccs.BusinessLogic.SortOrderEnum:

 DEFINE ENUM Ascending
 Descending
 .
END ENUM .

Ascending The field should be sorted ascending.

Descending The field should be sorted descending.

Common Component Specification – Business Entity V1Business Entity Page 48
30/09/2016 17:20:00

3.14 Ccs.BusinessLogic.INamedQuery

Describes a named query request. Used for the NamedQuery property of the
IGetDataRequest object.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.INamedQuery:

 /*--
 Purpose: Returns the name of the named query
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Name AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the array of (optional) parameters of the named query
 Notes: Each Named Query Parameter consists of an identifier (name) and a
 value (primitive holder) or values (primitive array holder)
 --*/
 DEFINE PUBLIC PROPERTY Parameters AS INamedQueryParameter EXTENT NO-UNDO
 GET.

END INTERFACE.

3.14.1 Public instance properties

Name Name

Description Returns the name of the requested named query

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value must not be unknown. It must provide a known
name of a named query supported by the Business Entity

Name Parameters

Description Returns the list of parameters for this INamedQuery instance

Type INamedQueryParameter EXTENT

Getter Public

Setter Not defined

Common Component Specification – Business Entity V1Business Entity Page 49
30/09/2016 17:20:00

Unknown This property value MAY be unknown (EXTENT = ?). When an
extent size greater than zero is provided every entry must be a valid
object reference.

Common Component Specification – Business Entity V1Business Entity Page 50
30/09/2016 17:20:00

3.15 Ccs.BusinessLogic.INamedQueryParameter

Describes an individual parameter of an INamedQuery.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Ccs.Common.Support.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.INamedQueryParameter:

 /*--
 Purpose: Returns the name of the named query parameter
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Name AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns a single value for this named query parameter
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Value AS IPrimitiveHolder NO-UNDO
 GET.

 /*--
 Purpose: Returns a list of values for this named query parameter
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Values AS IPrimitiveArrayHolder NO-UNDO
 GET.

END INTERFACE.

3.15.1 Public instance properties

Name Name

Description Returns the name of the named query parameter

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value must not be unknown. It must provide a known
parameter name for a parameter of a named query supported by the
Business Entity

Common Component Specification – Business Entity V1Business Entity Page 51
30/09/2016 17:20:00

Name Value

Description Returns a single value for this named parameter. The primitive
holders are used as an alternative to an “ANY-TYPE” parameter
type.

Type Ccs.Common.Support.IPrimitiveHolder

Getter Public

Setter Not defined

Unknown This property value might be unknown when the Values property is
not unknown.

Name Values

Description Returns a list of values for this named parameter. The primitive
array holders are used as an alternative to an “ANY-TYPE”
parameter type.

Type Ccs.Common.Support.IPrimitiveArrayHolder

Getter Public

Setter Not defined

Unknown This property value might be unknown except when the Value
property is not.

Common Component Specification – Business Entity V1Business Entity Page 52
30/09/2016 17:20:00

3.16 Ccs.BusinessLogic.IGetDataResponse

Interface for the response of the getData() method of the IBusinessEntity.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IGetDataResponse:

 /*--
 Purpose: Returns the custom response object
 Notes: May be used to return further information to the caller. May
 Return the reference to the IGetDataRequest:CustomParameter
 object
 --*/
 DEFINE PUBLIC PROPERTY CustomResponse AS Progress.Lang.Object NO-UNDO
 GET.

 /*--
 Purpose: Returns the Table requests
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY TableResponses AS IGetDataTableResponse EXTENT NO-UNDO
 GET.

END INTERFACE.

3.16.1 Public instance properties

Name CustomResponse

Description Returns the reference to the custom response object. MAY be used
to return further arbitrary information to the caller.

Type Progress.Lang.Object

Getter Public

Setter Not defined

Unknown This property value MAY be unknown.

Name TableResponses

Description Returns the array of IGetDataTableResponse instances describing
the paging context of every requested temp-table.

Type IGetDataTableResponse EXTENT

Getter Public

Setter Not defined

Common Component Specification – Business Entity V1Business Entity Page 53
30/09/2016 17:20:00

Unknown This property value must have an extent size greater than zero.
Each array element must contain a valid IGetDataTableResponse
reference.

Common Component Specification – Business Entity V1Business Entity Page 54
30/09/2016 17:20:00

3.17 Ccs.BusinessLogic.IGetDataTableResponse

Interface describing a single entry of the TableResponses property of the
IGetDataResponse interface.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IGetDataTableResponse:

 /*--
 Purpose: Returns the paging context to be passed back to the business
 entity when requesting the next set
 Notes: Used for Paging. This value typically consists of record
 Identifiers (e.g. DATA-SOURCE ROWID retrieved by the RESTART-
 ROWID function or other data required by the Business Entity to
 build the next set of data in a follow up call).
 --*/
 DEFINE PUBLIC PROPERTY NextPagingContext AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the paging context to be passed back to the business
 entity when requesting the previous set
 Notes: Used for Paging. This value typically consists of record
 identifiers
 (e.g. DATA-SOURCE ROWID retrieved by the RESTART-ROWID function
 or other data required by the Business Entity to build the
 previous set of data in a follow up call).
 --*/
 DEFINE PUBLIC PROPERTY PreviousPagingContext AS CHARACTER NO-UNDO
 GET.

 /*--
 Purpose: Returns the name of the ProDataset Table
 Notes: Identifies the table this IGetDataTableResponse belongs to
 --*/
 DEFINE PUBLIC PROPERTY TableName AS CHARACTER NO-UNDO
 GET.

END INTERFACE.

Common Component Specification – Business Entity V1Business Entity Page 55
30/09/2016 17:20:00

3.17.1 Public instance properties

Name NextpagingContext

Description Returns the paging context to be passed back to the business entity
when requesting the next set of records. This value typically
consists of record identifiers (e.g. DATA-SOURCE ROWID retrieved
by the RESTART-ROWID function or other data required by the
Business Entity to build the next set of data in a follow up call).

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value MAY be unknown or empty indicating that no
next set of data is present.

Name PreviousPagingContext

Description Returns the peging context to be passed back to the business entity
when requesting the previous set. This value typically consists of
record identifiers (e.g. DATA-SOURCE ROWID retrieved by the
RESTART-ROWID function or other data required by the Business
Entity to build the previous set of data in a follow up call).

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value MAY be unknown or empty indicating that no
previous set of data is present.

Name TableName

Description Identifies the table this IGetDataTableResponse belongs to. This
must be a valid name of a ProDataset member table.

Type Progress.Lang.Object

Getter Public

Setter Not defined

Unknown This property value must not be unknown or empty.

Common Component Specification – Business Entity V1Business Entity Page 56
30/09/2016 17:20:00

3.18 Ccs.BusinessLogic.IGetResultCountResponse

Interface for the response object of the getResultCount() method of the Business
Entity interface.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IGetResultCountResponse:

 /*--
 Purpose: Returns the result counts per requested table
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY ResultCounts AS IGetTableResultCountResponse EXTENT
 NO-UNDO
 GET.

END INTERFACE.

3.18.1 Public instance properties

Name ResultCounts

Description Returns the array of result counts per requested table.

Type IGetTableResultCountResponse EXTENT

Getter Public

Setter Not defined

Unknown This property value must have an extent value greater than zero.
Every entry in the array must be a reference to a valid
IGetTableResultCountResponse..

Common Component Specification – Business Entity V1Business Entity Page 57
30/09/2016 17:20:00

3.19 Ccs.BusinessLogic.IGetTableResultCountResponse

Interface for the IGetResultCount portion for a single temp-table represented by the
ResultCounts array of the IGetResultCountResponse.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IGetTableResultCountResponse:

 /*--
 Purpose: Returns is the result is exact (TRUE) or Guessed or Cached
(FALSE)
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY Exact AS LOGICAL NO-UNDO
 GET.

 /*--
 Purpose: Returns the number of results for this table
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY NumResults AS INT64 NO-UNDO
 GET.

 /*--
 Purpose: Returns the name of the table this result belongs to
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY TableName AS CHARACTER NO-UNDO
 GET.

END INTERFACE.

3.19.1 Public instance properties

Name Exact

Description Returns true when the NumResults property value in this
IGetTableResultCountResponse instance was the result of an exact
counting and false when the NumResults property is a guessed or
cached value.

Type LOGICAL

Getter Public

Setter Not defined

Unknown This property value must not be the unknown value.

Common Component Specification – Business Entity V1Business Entity Page 58
30/09/2016 17:20:00

Name NumResults

Description Returns the number of records this IGetTableResultCountResponse
represents.

Type INT64

Getter Public

Setter Not defined

Unknown This property value MAY be the unknown value indicating that the
Business Entity is not able to provide a result in any reasonable
way.

Name TableName

Description Identifies the table this IGetTableResultCountResponse belongs to.
This must be a valid name of a ProDataset member table.

Type CHARACTER

Getter Public

Setter Not defined

Unknown This property value must not be unknown or empty.

Common Component Specification – Business Entity V1Business Entity Page 59
30/09/2016 17:20:00

3.20 Ccs.BusinessLogic.IUpdateDataRequest

Interface for the request object for the updataData() method of the updatable
Business Entity.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

INTERFACE Ccs.BusinessLogic.IUpdateDataRequest:

 /*--
 Purpose: Returns the CommitScope to be used by the updateData method
 Notes: The value is considered as a recommendation as the Business
 Entity may ignore this setting and use a different commit scope
 based on the business logic requirements
 --*/
 DEFINE PUBLIC PROPERTY CommitScope AS CommitScopeEnum NO-UNDO
 GET.

 /*--
 Purpose: Returns a custom request object
 Notes:
 --*/
 DEFINE PUBLIC PROPERTY CustomRequest AS Progress.Lang.Object NO-UNDO
 GET.

END INTERFACE.

3.20.1 Public instance properties

Name CommitScope

Description Returns the CommitScope to be used by the updateData() method.
The value is considered as a recommendation as the Business
Entity MAY ignore this setting and use a different commit scope
based on the business logic requirements

Type CommitScopeEnum

Getter Public

Setter Not defined

Unknown This property value MAY be the unknown value indicating that the
consumer provides no hint on the commit scope to the Business
Entity.

Common Component Specification – Business Entity V1Business Entity Page 60
30/09/2016 17:20:00

Name CustomRequest

Description Returns the custom parameter object provided to the updateData()
method. It’s up to the implementer of the Business Entity to define
the meaning of this parameter.

Type Progress.Lang.Object

Getter Public

Setter Not defined

Unknown This property value MAY be the unknown value.

Common Component Specification – Business Entity V1Business Entity Page 61
30/09/2016 17:20:00

3.21 Ccs.BusinessLogic.CommitScopeEnum

Enumeration for the CommitScope property of the IUpdataDataRequest interface.

USING Ccs.BusinessLogic.* FROM PROPATH .
USING Progress.Lang.* FROM PROPATH .

ENUM Ccs.BusinessLogic.CommitScopeEnum:

 DEFINE ENUM /* All records in the dataset in a single tx */
 All

 /* One transaction per table row */
 Row

 /* One transaction for all records in a single table */
 Table

 /* One database transaction per parent row and its child table
 and all grand-child records. */
 Nested

 Default = Row
 .
END ENUM .

3.21.1 Enum members

All All records in the dataset in a single transaction.

Row
(Default)

One transaction per table row.

Table One transaction for all records in a single table.

Nested One database transaction per parent row and its child table and all grand-
child records.

Common Component Specification – Business Entity V1Business Entity Page 62
30/09/2016 17:20:00

4 Guidelines for implementers
It is mandatory that the Business Entity is developed with no particular type of
consumer in mind. Any data conversion required to support a particular consumer
must be implemented in a Service Interface component – outside of the Business Entity.

The Business Entity leverages the ProDataset before-image feature for updating
data. Only a single updateData() method is provided supporting all three types of
data manilpulations: Create, update and delete. It’s the job of the Service Interface to
provide specializes entry points for clients that do not support ProDatasets with
before-image support.

A Business Entity is a critical component for the runtime performance of a business
application. Especially business entity read operations are required to be
implemented with optimal performance in mind. A Business Entity is responsible for
deciding if a certain request is acceptable to be executed and throw an error for
requests that are not, e.g. when critical components of an index are not provided
during a read operation of a large database table.

During the implementation of the Business Entity it is important to ensure that the
execution of the getResultCount() method does not result in a poor system
performance as this method MAY be executed fairly often by consumers.

Common Component Specification – Business Entity V1Business Entity Page 63
30/09/2016 17:20:00

Document Control
Title: OERA Business Entity Standard

Version: 1.0

Common Component Specification – Business Entity V1Business Entity Page 64
30/09/2016 17:20:00

Document History

Date Version Author Change Details

27/05/2015 0.1 Mike Fechner Initial revision

14/06/2016 0.3 Mike Fechner Changes after review by
spec team

16/06/2016 0.4 Mike Fechner Changes after review by
spec team

17/06/2016 0.5 Mike Fechner Changes after review by
spec team

21/06/2016 1.0 Mike Fechner Version released to
Community Review

Common Component Specification – Business Entity V1Business Entity Page 65
30/09/2016 17:20:00

5 Outstanding Issues
- Request authorization: When the Service Interface component will be

discussed by the CCS group we have to make a decision on who’s
responsible for implementing request authorization: The Business Entity or
the Service Interface.

Implementing this in the Service Interface simplifies to keep this out of the
scope of the business logic and facilitates generic and reusable solutions
for this purpose.

However, this requires that all calls from a business entity into another
business entity (potentially crossing application domain boundaries that
require proper authorization) would have to go through the service
interface as well. Otherwise we cannot prevent that a business entity that
is unrestricted for a certain consumer would be able to call on behalf of
that consumer into a business entity that the original consumer would not
have access to.

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.1 1.3 Definitions, Acronyms and Abbreviations
	1.4 References to external documents
	1.5 Contents Overview
	Section 1 is the introduction and includes a description of the project, applicable and reference documents.
	Section 2 provides the component’s overview.
	Section 3 contains the component’s component descriptions.
	Section 4 contains guidelines to implementers
	Section 5 includes the component’s revision history, outstanding issues, and action items

	2 Component Overview
	2.1 Component Description
	2.2 Component Architecture
	2.2.1 Ccs.Common.IService
	2.2.2 Ccs.BusinessLogic.IBusinessEntity
	2.2.3 getDataset() method
	2.2.4 getData() method
	2.2.4.1 Filtering using an ABL query string
	2.2.4.2 Filtering using an array of query predicates
	2.2.4.3 Filtering using a named query with parameters
	2.2.4.4 Paging
	2.2.4.5 Custom Parameters/Request Context
	2.2.4.6 Response Object

	2.2.5 getResultCount() method
	2.2.6 updateData() method
	2.2.7 Named operations

	2.3 Component Package Definition
	2.4 Component Property Data and Organization
	2.5 Component Error Handling
	2.6 Dependencies and interactions with other OERA common standards

	3 Component Interfaces and Classes
	3.1 Ccs.BusinessLogic.IBusinessEntity
	3.1.1 Public instance methods

	3.2 Ccs.BusinessLogic.IUpdatableBusinessEntity
	3.2.1 Public instance methods

	3.3 Ccs.BusinessLogic.ISupportNamedOperations
	3.3.1 Public instance methods
	3.3.2 Named Operations

	3.4 Ccs.BusinessLogic.IGetDataRequest
	3.4.1 Public instance properties

	3.5 Ccs.BusinessLogic.IGetDataTableRequest
	3.5.1 Public instance properties

	3.6 Ccs.BusinessLogic.IQueryDefinition
	3.6.1 Public instance properties

	3.7 Ccs.BusinessLogic.IQueryEntry
	3.7.1 Public instance properties

	3.8 Ccs.BusinessLogic.IQueryGroup
	3.8.1 Public instance properties

	3.9 Ccs.BusinessLogic.IQueryPredicate
	3.9.1 Public instance properties

	3.10 Ccs.BusinessLogic.IQuerySortEntry
	3.10.1 Public instance properties

	3.11 Ccs.BusinessLogic.JoinEnum
	3.11.1 Enum members

	3.12 Ccs.BusinessLogic.QueryOperatorEnum
	3.12.1 Enum members

	3.13 Ccs.BusinessLogic.SortOrderEnum
	3.14 Ccs.BusinessLogic.INamedQuery
	3.14.1 Public instance properties

	3.15 Ccs.BusinessLogic.INamedQueryParameter
	3.15.1 Public instance properties

	3.16 Ccs.BusinessLogic.IGetDataResponse
	3.16.1 Public instance properties

	3.17 Ccs.BusinessLogic.IGetDataTableResponse
	3.17.1 Public instance properties

	3.18 Ccs.BusinessLogic.IGetResultCountResponse
	3.18.1 Public instance properties

	3.19 Ccs.BusinessLogic.IGetTableResultCountResponse
	3.19.1 Public instance properties

	3.20 Ccs.BusinessLogic.IUpdateDataRequest
	3.20.1 Public instance properties

	3.21 Ccs.BusinessLogic.CommitScopeEnum
	3.21.1 Enum members

	4 Guidelines for implementers
	5 Outstanding Issues

