

Common Component Specification

 OpenEdge Framework Technical Design Document

OpenEdge Application Architecture

Specification
(OEAA)

Version 1.0

Spec
Team
Members

Freddy Boisseau flb@smsgroup.com

Structured Management
Systems Inc.

Shelley B. Chase* schase@progress.com Progress

Rom Elwell* rome@issol.com Innovative Software Solutions

Mike Fechner
mike.fechner@consultingwerk
.de

Consultingwerk

Damian Fernando damianf@kingslake.com Kingslake

Tharanga Herath tharangah@kingslake.com Kingslake

Prabhu Jha prabhu@jktech.com JKT India

Patrick O'Rielly patricko@mip.co.za MIP

Robin Smith* rosmith@progress.com Progress-Bravepoint

* Denotes contributing author

mailto:flb@smsgroup.com
mailto:schase@progress.com
mailto:rome@issol.com
mailto:mike.fechner@consultingwerk.de
mailto:mike.fechner@consultingwerk.de
mailto:damianf@kingslake.com
mailto:tharangah@kingslake.com
mailto:prabhu@jktech.com
mailto:patricko@mip.co.za
mailto:rosmith@progress.com

Common Component Specification – Architecture V1 Page ii
17/02/2016 11:48:00

TABLE OF CONTENTS

1 INTRODUCTION.. 1

1.1 Purpose ... 1
1.2 Scope ... 2

2 ARCHITECTURE OVERVIEW .. 2

2.1 OpenEdge Application Architecture (OEAA) ... 2
2.2 OpenEdge Application Architecture (OEAA) Diagram .. 3
2.3 Compliance to the OEAA Version 1 Specification ... 4
2.4 Component Naming Requirements ... 5
2.5 Component Specification Versioning .. 6
2.6 Component Documentation (For Implementation) .. 6
2.7 Component Property Data and Organization .. 6
2.8 Component Communication .. 7
2.9 Component Error Handling .. 7

3 OPENEDGE APPLICATION ARCHITECTURE COMPONENTS ... 8

3.1 Required Components ... 8
3.1.1 Manager Base Class (Ccs.Common.IManager) ... 9
3.1.2 Startup Manager (Ccs.Common.IStartupManager) .. 9
3.1.3 Session Manager (Ccs.Common.ISessionManager) ... 11
3.1.4 Client Context Object (Ccs.Common.IClientContext) ... 12
3.1.5 Service Base Class (Ccs.Common.IService) ... 12
3.1.6 Service Manager (Ccs.Common.IServiceManager) ... 13
3.2 Recommended Components ... 14
3.2.1 Context Manager (Ccs.Common.IContextManager) .. 14
3.2.2 Authentication Manager (Ccs.Common.IAuthenticationManager) 14
3.2.3 Authorization Manager (Ccs.Common.IAuthorizationManager) 14
3.2.4 Catalog Manager (Ccs.Common.ICatalogManager) .. 15
3.2.5 Connection Manager (Ccs.Common.IConnectionManager) 15
3.2.6 Logging Manager (Ccs.Common.ILoggingManager) ... 15
3.2.7 Message Manager (Ccs.Common.IMessageManager) .. 15
3.2.8 Property Manager (Ccs.Common.IPropertyManager) .. 15
3.2.9 Translation Manager (Ccs.Common.ITranslationManager) 15
3.2.10 Analytics Manager (Ccs.Common.IAnalyticsManager) .. 16

4 SAMPLE APPLICATION FLOW .. 16

4.1.1 Bootstrap the Server ... 16
4.1.2 Establish a Session ... 17
4.1.3 Call Service to handle the request .. 18

5 DOCUMENT HISTORY ... 19

Common Component Specification – Architecture V1 Page 1
17/02/2016 11:48:00

1 Introduction

The Common Component Specification (CCS) project is designed to simplify the

development of modern business applications by defining the architecture and

components of a modern application development framework for the OpenEdge

platform. The CCS project identifies a set of specifications for the common components

needed in developing modern business applications. When these components are built

as part of a modernization framework, application developers can concentrate more on

the business logic of the application rather than on infrastructure and integration.

The CCS Specification: OpenEdge Application Architecture Version 1 builds on the

Progress® OpenEdge® Reference Architecture (OERA) blueprint and defines a

prescriptive architecture to use when building Enterprise Business Applications with

OpenEdge. This version uses a service-oriented architecture (SOA) design in which

application components provide services to other components via a communications

protocol. The principles of service-orientation are independent of any vendor, product or

technology.

This architectural specification defines the components of an OEAA-compliant

architecture, the responsibilities of each component, and the communication protocol

between components. It is this spec’s responsibility to define the overall architecture for

an OEAA-compliant framework and identify the minimum required components. A

separate, detailed CCS specification is provided for each component.

These CCS specifications can be used in multiple ways. Some vendors will provide

complete framework implementations, others might provide partial, focused

frameworks, and others will implement single components for use with an OEAA-

compliant framework. For example, a security component might be provided by a

specific vendor that specializes in security while another vendor focuses on UI

metadata. For this reason, every component will be versioned independently of the

CCS architectural version. As long as the components follow the architectural

specification, components compliant to that architecture should work together nicely.

For this reason, component specifications must identify the CCS OEAA architectural

version or versions for which they are compatible.

1.1 Purpose

The transformation of OpenEdge applications is happening globally with a number of

different modernization frameworks. These frameworks provide needed common

functionality, such as security, configuration, and session management but are

developed independent of each other and are not based on any standards or

common architecture principles.

The goal of the CCS project is to define a prescriptive architecture and standard set

of specifications for the common components used in business applications by

engaging the OpenEdge community and leveraging its expertise in building the best

enterprise business applications. Each specification will include the API definitions as

Object-oriented ABL (OOABL) interfaces, the expected behavior and other collateral

to sufficiently define the component.

Common Component Specification – Architecture V1 Page 2
17/02/2016 11:48:00

1.2 Scope

This OpenEdge Application Architecture (OEAA) specification defines a prescriptive

architectural framework for building OpenEdge applications. It defines the model and

components of an application as well as the responsibilities of each component. The

bootstrapping and interaction between components is also covered in this

specification.

Version 1 of the OEAA focuses on the common components. Each of these

components is covered in individual CCS specifications, whose details are outside the

scope of this specification.

This document also defines the minimum set of requirements for a framework to be

OEAA-compliant.

2 Architecture Overview

The OEAA Version 1 defines a framework for the modernization of OpenEdge

applications. This architecture builds on the current Progress® OpenEdge® Reference

Architecture (OERA) and goes a step deeper by defining a set of ABL Interfaces and

APIs for each major subsystem.

CCS specification authors should refer to this document for guiding principles.

2.1 OpenEdge Application Architecture (OEAA)

The OEAA Version 1 has the following subsystems and components. The Common
Services components are the focus for version 1 of the OEAA and as such are the
scope for this specification.

 Common Components

o Startup Manager

o Session Manager

o Service Manager

o Connection Manager

o Property Manager

o Context Data Manager

o Authorization Manager

o Authentication Manager

o Messaging Manager

o Logging Manager

o Translation Manager

o Analytics Manager

Common Component Specification – Architecture V1 Page 3
17/02/2016 11:48:00

 Data Access

o Data Servers

o Database: Open or SQL

o Data Synchronization DB

 Business Services

o Business Entity

o Data Synchronization Temp-table

o Workflow

o Task

 Service Interfaces

o Data Service Catalog

o Service API

o UI Metadata

 Presentation

o Client Data Object

2.2 OpenEdge Application Architecture (OEAA) Diagram

The OEAA diagram shows the subsystems and components of the architecture. OEAA
version 1 focuses on the Common Infrastructure subsystem.

OpenEdge Application Architecture

Common Component Specification – Architecture V1 Page 4
17/02/2016 11:48:00

2.3 Compliance to the OEAA Version 1 Specification

A framework is OEAA-compliant as long as it follows the architectural model of this

specification and implements all required components according to their individual

specifications. On its own a framework with only the required components will not be

very useful. Recommended components are beneficial to an application architecture

framework but are not mandatory.

Compliance to the CCS enables the components of different frameworks and vendors

to work interchangeably. CCS compliance will also offer the ability to choose between

implementations thus providing developers the flexibility to swap components based

on merit.

In addition, developers will be able to switch implementations with a minimal amount

of porting effort.

Finally, the Common Components specifications will also enable creation of standard

tools that can be used across multiple framework vendors, thus providing more

productivity to framework end users.

Common Component Specification – Architecture V1 Page 5
17/02/2016 11:48:00

2.4 Component Naming Requirements

Component specifications define APIs as OOABL interfaces according to the following
requirements:

Key:

 PascalCasing – start with capital letter, first letter of each subsequent word capitalized

 camelCasing – start with lowercase letter, first letter of each subsequent word
capitalized

Type Standards to be followed Example

Namespaces

Use Ccs.<oeaalayer> as root.

Pascal case, no underscores. Note that any

acronyms of three or more letters should be

Pascal case (Oeaa instead of OEAA)

instead of all caps.

Ccs.Common.*

Ccs.DataSource.*

Ccs.DataAccess.*

Ccs.BusinessComponents.*

Ccs.ServiceInterfaces.*

Ccs.Presentation.*

Ccs.EnterpriseServices.*

Interfaces

Interface names should begin with the

capital letter "I" and use the Pascal casing.

Interfaces should not have the same name

as the namespace in which they reside.

Any acronyms of three or more letters

should be Pascal case, not all caps. Try to

avoid abbreviations, and try to always use

nouns.

Ccs.Common.IStartupManager

Ccs.Presentation.IClientDataObje

ct

Classes

Classes that implement a CCS interface can

use any namespace they like.

Class Naming MUST follow the Pascal case,

no underscores or leading "C" or "cls" are

recommended.

If any Class name begins with letter “I”

should not have the letter following in Capital

letter (may contradict with an Interface

Com.Myvendor.StartupManager

Myvendor.Common.

StartupManager

Methods Method names MUST use Camel case. getManager()

Properties Property names MUST use Pascal case. CurrentClientContext

Common Component Specification – Architecture V1 Page 6
17/02/2016 11:48:00

2.5 Component Specification Versioning

The component versioning MUST follow semantic versioning, or "semver", as defined

at http://semver.org/. The Semantic Versioning specification is authored by Tom

Preston-Werner, inventor of Gravatars and co-founder of GitHub.

The gist of it is - given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner,
and

3. PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

2.6 Component Documentation (For Implementation)

All comments in source code files MUST adhere to “C-Style” formatting, which allows

tools such as ABLDoc (OpenEdge) or the PCT Class Documentation task to generate

reference documentation. This style is commonly referred to as a “Multi-line”

comment.

2.7 Component Property Data and Organization

Component Specifications can contain the following:

 Public OpenEdge data types exposed in the class and interfaces

 Data naming conventions

 External data storage organization requirements (if any)

 ABL Enums or compatible ABL interface

 Any data collections used by an interface and how that collection’s data
values are presented to an application developer

Common Component Specification – Architecture V1 Page 7
17/02/2016 11:48:00

2.8 Component Communication

Application complexity and scope vary widely and a single communication model is not
appropriate. As a result this specification defines two available models, one for smaller
applications (single domain) versus complex applications (multi-domain). Both
communication models define how a component of OEAA communicates with another
component of OEAA.

Communication between components within a single application domain

This style is used for communication within a single OEAA layer and between OEAA
layers. All functionality is encapsulated in a single domain so no “façade” is required.
The goal is to allow customization of a component API by using the Service Manager
to obtain a reference to the component. The calling component does not need to
determine which component implementation to use because it is all managed by the
configuration of the Service Manager.

This communication model allows the calling component to query the Service Manager
for a reference to another managed component. The calling component can then use
this reference to access the methods on the associated components directly.

Communication between application domains

This style is used for communication between application domains regardless if the
component is in the same OERA layer, different OERA layers, a legacy system or an
external system. The goal is to provide a single model to communicate outside of the
current domain regardless of where or how that system is implemented. All
functionality for a domain is defined by an external “façade” that abstracts the actual
implementation.

This communication model allows the calling component to query the Service Manager
for a reference to the interface type they wish to communicate with. The calling
component can then use this reference to access methods on the API.

2.9 Component Error Handling

Exceptions that can be thrown from each interface method should be identified in the
individual Component Specification.

A component can use Progress.Lang.SysError or define their own custom exceptions
extended from Progress.Lang.AppError. Errors classes can be a general exception
common to the framework or it can be a specific implementation relevant only to the
respective component. Class naming should highlight the Type of Error and the
Component if it relates to a component.

All methods of a component should return all errors to their caller. It is recommended
that all calls to component methods be wrapped in a try-catch block. Samples in the
component spec should reflect this recommended best practice

Common Component Specification – Architecture V1 Page 8
17/02/2016 11:48:00

3 OpenEdge Application Architecture Components

There are 2 types of components in the OEAA – required and recommended. Required
components are mandatory to bootstrap the framework. In other words a framework
cannot exist without these components however a framework with only these
components is not very useful.

Recommended components provide specific functional behaviour that might not be
needed by every framework.

It is important to note the difference between managers and services. Managers are a
single instance and perform a specific task. A Service represents the business functions
that are available to the client or other application components or services.

All managers are run as a single instance by the Startup Manager and persist for the
lifetime of the ABL session. Services are provided and managed by the Service
Manager which controls their lifecycle.

3.1 Required Components

The following diagram displays the static assembly for the required components of the
Ccs.Common namespace – StartupManager, SessionManager (and context object)
and ServiceManager, respectively. The diagram also displays the strong associations
between the component StartupManager and the (object) references it contains for
SessionManager and ServiceManager, respectively.

Common Component Specification – Architecture V1 Page 9
17/02/2016 11:48:00

3.1.1 Manager Base Class (Ccs.Common.IManager)

This base class defines a common method that can be used by the Startup Manager
to start any Manager. The method signature is:

initializeManager ().

Each Manager must implement a common initialization interface:

Using Ccs.Common.*.

Interface Ccs.Common.IManager:

 Method public void initializeManager ().

End interface.

3.1.2 Startup Manager (Ccs.Common.IStartupManager)

The Startup Manager is responsible for bootstrapping the session by instantiating all
other common infrastructure components (managers) and providing a reference to
each configured component. The Startup Manager is the single point within the
application to reference or gain access to the other managers. In order to have a
pluggable model for the framework and allow components from various vendors to
work together, the Startup Manager is the factory that instantiates all other common
components.

When the Startup Manager is instantiated, it will locate and load its own configuration
data or have it passed in by a bootstrap process. This configuration data defines an
implementation class for each common infrastructure component interface to be
instantiated by the Startup Manager. Each common infrastructure component, or
manager, including the Startup Manager, will implement a common interface
ensuring that each manager implements a common initialization interface required by
the Startup Manager and bootstrap procedure. The Startup Manager will then read
through each configured service component, in the order they are defined, and
instantiate the manager object. A reference to the object is then assigned to the
relevant property in the Startup Manager as defined by the Startup Manager
Interface.

Common Component Specification – Architecture V1 Page 10
17/02/2016 11:48:00

The Startup Manager Interface would contain public properties referencing each
common services component interface required by the CCS. For example:

Using Ccs.Common.*.

Interface Ccs.Common.IStartupManager inherits IManager:

 /* References to Service and Session Managers */
 Define public property ServiceManager as IServiceManager no-undo get.
 Define public property SessionManager as ISessionManager no-undo get.

End interface.

The Startup Manager must be able to provide a reference to all the configured
managers and itself. The Startup Manager must also allow for multiple
implementations of the Startup Manager Interface to be injected by a bootstrap
process if required.

To provide a static reference to the Startup Manager, all CCS compliant frameworks
must provide a reference to the Startup Manager. This class will contain a static
public instance property and a private constructor. The instance property is defined
as the Startup Manager Interface with a public setter, allowing for any implementation
of the Startup Manager Interface to be injected by the bootstrap process.

For example, the StartupManager implementation may be defined as follows:

Using Ccs.Common.*.

Block-level on error undo, throw.

Class Ccs.Common.StartupManager:

 Define public static property Instance as IStartupManager no-undo get.
Set.

 Constructor private StartupManager ():

 End constructor.

End class.

A bootstrap procedure, configured as the application server startup procedure, would
instantiate a new Startup Manager and set the Startup Manager Instance property.

/*--
 File : bootstrap.p
 Purpose : Instantiate the ConfigManager
 Description : Ccs Framework startup procedure
 --*/
Using Ccs.Common.StartupManager.

Block-level on error undo, throw.

Define input parameter pcStartupParam as character no-undo.

StartupManager:Instance = new VendorA.Common.StartupManager().

Common Component Specification – Architecture V1 Page 11
17/02/2016 11:48:00

StartupManager:Instance:initializeManager ().

To get a reference to any manager, the static Instance property is used to return the
managers instance that was started by the Startup Manager. This example shows
how the reference to the Service Manager is retrieved.

Define variable oServiceManager as IServiceManager no-undo.

oServiceManager = StartupManager:Instance:ServiceManager.

3.1.3 Session Manager (Ccs.Common.ISessionManager)

Each request made to the business services is for a particular client session. The
client session has context information associated with it such as who is the logged in
user, what branch the user is logged into, date and numeric formats, time zone, etc.
The Session Manager is responsible for validating the authentication of the request
made on the business services, establishing the application server runtime session to
service the request and provide access to the client context data.

When establishing the session, the Session Manager must validate the
authentication of the client request and then establish the context data on the first
client request (or re-establish on subsequent requests) based on the client identity.
The Session Manager may use other service components such as the Context Data
Manager and Client Context Object to establish the session.

A sealed Client Principal Object (or Security Token) will be passed to the Session
Manager that will identify who the client is. The Session Manager will use the C-P to
authenticate the request and assert the client identity on the session. The Session
Manager may simply assert the C-P against the session/databases relying on the
database domain configuration for authentication and then if successful, establishes
the session context.

The Session Manager must provide access to the client context data by instantiating
a Client Context Object using the C-P as identity and assigning it to a public property
on the Session Manager. This Client Context object will be defined as part of the
Session Manager specification.

The Session Manager will also set the appropriate environmental properties such as
date and numeric formats, time zone, etc. Once the request has been completed the
Session Manager must “end” or “reset” the session. The Session Manager must
reset the application server runtime session to a “safe” state so that the identity and
context data of the client from the last request is not left asserted against the session
and its databases.

Common Component Specification – Architecture V1 Page 12
17/02/2016 11:48:00

An example of the minimum expected interface for the Session Manager is:

Using Ccs.Common.*.

Interface Ccs.Common.ISessionManager inherits IManager:

 Define public property CurrentClientContext as IClientContext no-undo
get.

 Method public void establishSession(input phClientPrincipal as handle
).

 Method public void endSession().

End interface.

3.1.4 Client Context Object (Ccs.Common.IClientContext)
The Client Context Object is a sub component of the Session Manager. The Session
Manager establishes the session environment using the user (or client) context data.
This data is made available through the Client Context Object.

The Client Context Object is the logical representation of the client session data and
it represents the properties of the client session, such as who the user is, what the
date and number formats are and any application specific data representing the state
of the client session. This object is also responsible for initializing any application
specific properties when a new session is created. This is a serializable object that
can be persisted at the end of the request and re-instantiated at the start of
subsequent requests.

The Client Context object can store as much information as is useful and provide a
way for the programmer to request only the data they need for the current request,

3.1.5 Service Base Class (Ccs.Common.IService)

This base class defines a common method that can be used by the Service Manager
to start any Service. The method signature is:

initializeService ().

Each Business Service must implement a common initialization interface:

Using Ccs.Common.*.

Interface Ccs.Common.IService:

 Method public void initializeService ().

End interface.

Common Component Specification – Architecture V1 Page 13
17/02/2016 11:48:00

3.1.6 Service Manager (Ccs.Common.IServiceManager)
A Business Service is an object containing business functions that are either
exposed to the client through the service interface or may be common reusable
business functions used by other application components or services. These
business services are typically defined class based objects or persistent procedures.
These include, but are not limited to, Business Entities, Tasks and Workflow
components.

The Service Manager is responsible for instantiating all Business Services and
managing their life cycle. The Service Manager is used to instantiate these objects
or procedures and shut them down as appropriate based on a life cycle configuration
of the service. The Service Manager is the central controller or factory that ensures
that Business Services are initialized consistently and not left consuming resources
unnecessarily or started multiple times.

Each Business Service will implement a common interface ensuring that each
service implements a common initialization interface required by the Service
Manager.

The Service Manager is also responsible for instantiating a configured
implementation of the requested service. This allows for a local customization to be
provided as configuration data to the Service Manager for a service rather than
having the application instantiate appropriate implementations for each deployment.

When the Service Manager is instantiated by the Startup Manager, the configuration
data for the Service Manager is loaded. This configuration data will define the
service implementations and life cycle configurations for the services. Since large
enterprise applications contain 1000’s of services, the configuration data for service
implementations should be by exception where a custom implementation is required
rather than having to configure all services. Likewise, the life cycle configuration for
services should be defined using rules rather than defining the life cycle for each
service.

The Service Manager is responsible for managing the life cycle of the business
services. That is, how long services remains instantiated and available for reuse.
The life cycle may be one of “single”, “request” or “session”.

 If the service life cycle is “single”, the Service Manager will instantiate the
service and returns its reference but does not keep a copy of the service
reference. The request initiator will be responsible for deleting the service
object or leaving it to the garbage collection to destroy. If another request is
made for the same service, the Service Manager will instantiate a new service
and returns a new reference to the service.

 If the service life cycle is “request, the Service Manager will instantiate the
service and returns its reference and will keep a copy of the service
reference. If another request is made for the same service during the life time
of the client request, then the same reference to the instantiated service will
be returned without starting a new service. When the client request is
complete, the Service Manager will be notified that the client request is
complete and the Service Manager will shut down the service and remove the
reference to the service.

 If the service life cycle is “session”, the Service Manager will instantiate the
service and returns its reference and will keep a copy of the service

Common Component Specification – Architecture V1 Page 14
17/02/2016 11:48:00

reference. If another request is made for the same service at any time, then
the reference to the instantiated service is returned.

An example of the minimum expected interface for a Service Manager would be:

Using Ccs.Common.*.
Using Progress.Lang.*.

Interface Ccs.Common.IServiceManager inherits IManager:

 Method public IService getService(input poServiceClass as Class).

 Method public IService getService(input poServiceClass as Class,
 input pcInstanceName as character).

 Method public void stopLifeCycle(input poLifeCycle as
ServiceLifeCycleEnum).

 Method public void stopService(input pcServiceTypeName as character,
 input pcInstanceName as character).

 Method public Class getServiceImplementation(input poService as Class
).

End interface.

3.2 Recommended Components

3.2.1 Context Manager (Ccs.Common.IContextManager)
The Context Data Manager is a sub component of the Session Manager and is
responsible for retrieving and storing/caching the session state or context data for
each service request. The session context data is managed and made available by
the Session Manager. The Context Data Manager is used to store the data so that it
can be retrieved and made available across all Application Server sessions and
agents for all subsequent requests by the client. The Context Data Manager needs
to be able to deal with multiple simultaneous requests to retrieve and persist the
client context data

3.2.2 Authentication Manager (Ccs.Common.IAuthenticationManager)

(Including the Security Token Service)

The Authentication Manager accepts a sealed client-principle and validates the
token. This client-principle is normally generated by the Spring Security of a PAS for
OE server, referred to the [external] Security Token Service. The Authentication
Manager will assert the user’s identity for the ABL session resources (AppServer
connections, DB connections, etc.).

The sealed client-principle is stored in the client context for use by other components
such as the Authentication Manager. For example: the Authorization Manager
may obtain the current-user-identity’s identity for resource access control.

3.2.3 Authorization Manager (Ccs.Common.IAuthorizationManager)
The role of the Authorization Manager is to implement role-based access-control for
local ABL session resources. The Authorization Manager performs standard

Common Component Specification – Architecture V1 Page 15
17/02/2016 11:48:00

resource-action tests using the ABL session’s current identity (i.e. the Client-Principal
security token) established by the Authentication Manager. The business application
uses the Authorization Manager to query a client’s rights to execute some action on a
resource before it is used.

3.2.4 Catalog Manager (Ccs.Common.ICatalogManager)
A Catalog Manager is responsible for providing the catalog definition for the JSDO
call from the client and the definition of the service function so that the Service
Manager can invoke the call to execute the client request. This is used for publishing
a catalog of available services and supporting the JSDO catalog in a dynamic
fashion.

3.2.5 Connection Manager (Ccs.Common.IConnectionManager)
The Connection Manager is responsible for creating and managing connections to
external services. External services could be other ABL applications running on a
separate application server or 3rd party web service. The connection manager is used
to establish the connection and manage the life cycle of those connections.

3.2.6 Logging Manager (Ccs.Common.ILoggingManager)
The Logging Manager is responsible for logging, formatting and managing errors that
are caught by the service interface and are encapsulated into the response message
by the Message Manager. The Logging Manager provides a single interface for the
application to log messages in a consistent format. The physical storage mechanism
should be able to be specified by the caller such as file system, db…

3.2.7 Message Manager (Ccs.Common.IMessageManager)
The Message Manager is responsible for creating and managing message objects
that can be passed between clients and servers in a decoupled system. The primary
messages managed by the Message Manager are the request and response
messages that are passed through the Service Interface for each client request.
Each request made to the business services has request and response information
associated with it or in other words, the input and output parameters to the business
service. This information is defined as a request and response message that passes
through the service interface. This could be a JSON object transported over HTTP.
The Message Manager provides access to these 2 primary messages so that they
are accessible from any business component or manager. The Message Manager is
responsible for parsing the request message from the client and formatting the
response message to be returned to the client.

3.2.8 Property Manager (Ccs.Common.IPropertyManager)
The Property Manager is responsible for providing access to configuration data that
other common components may require. The Property Manager’s interfaces would
effectively produce a single methodology by which external configuration data could
be consumed from one or more physical sources of varying types and locations.

3.2.9 Translation Manager (Ccs.Common.ITranslationManager)
The Translation Manager is responsible for language and context message
translation. All application messages and text to be displayed to the client should be
passed through the Translation Manager that will then translate the message or text
to the appropriate message based on the current user context. This might be
translating to the user’s language or translating business terms based on the division
or branch the user belongs to.

Common Component Specification – Architecture V1 Page 16
17/02/2016 11:48:00

3.2.10 Analytics Manager (Ccs.Common.IAnalyticsManager)
The Analytics Manager is responsible for collecting data regarding the usage and
metrics for the application. All data collected is persisted for reporting.

4 Sample Application Flow

4.1.1 Bootstrap the Server
The application server’s start up procedure must bootstrap the framework by
initializing a Startup Manager instance and assign the static Instance property of the
CSS Startup Manager.

The Startup Manager will then instantiate all other common components that are
registered. A reference to the Startup Manager is global for the session.

Pacific AppServer for OpenEdge
(Web/HTTP, REST, SOAP, APSV)

Common Infrastructure

Data Source

Data Access

Manager

Session
Manager

Service
Manager

Context Data
Manager

Authentication

Authorization

Catalog
Manager

Connection
Manager

Logging
Manager

Message
Manager

Property
Manager

Translation
Manager

A nalytics Manager

Business Components

Service Interfaces
Startup

Mgr
Startup

Bootstrap.p Pacific AppServer for OpenEdge
(Web/HTTP, REST, SOAP, APSV)

Common Infrastructure

Manager

Business Components

Data Source

Data Access

Service Interfaces
Startup

Common Component Specification – Architecture V1 Page 17
17/02/2016 11:48:00

4.1.2 Establish a Session
When a request comes into a web server without a session identifier, the session
must be created first and the user must be authorized. This initial request message
often contains a signed and sealed security token that is passed to the Service
Manager for validation.

For the initial request, the Service Interface must create the session. To do this it
gets reference to the Session Manager from the Startup Manager.

The Service Interface calls the Session Manager passing a signed and sealed
security token (a Client-Principle Object) and the Session Manager establishes the
session context.

Pacific AppServer for OpenEdge
(Web/HTTP, REST, SOAP, APSV)

Common Infrastructure

Data Source

Data Access

Manager

Session
Manager

Service
Manager

Context Data
Manager

Authentication

Authorization

Catalog
Manager

Connection
Manager

Logging
Manager

Message
Manager

Property
Manager

Translation
Manager

A nalytics Manager

Request
Message

Business Components

Service Interfaces
Client

Context
CP Startup

Pacific AppServer for OpenEdge
(Web/HTTP, REST, SOAP, APSV)

Common Infrastructure

Data Source

Data Access

Manager

Session
Manager

Service
Manager

Context Data
Manager

Authentication

Authorization

Catalog
Manager

Connection
Manager

Logging
Manager

Message
Manager

Property
Manager

Translation
Manager

A nalytics Manager

Request
Message

Business Components

Service Interfaces
Session

Mgr Startup

Common Component Specification – Architecture V1 Page 18
17/02/2016 11:48:00

4.1.3 Call Service to handle the request

Now that the session is created, it is time to handle the request sent in to the Service
Interface. The Service Interface calls the Service Manager with the service name and
the request. The Service Manager runs the requested Business Service and passes
the request to the Business Service.

The Business Service handles the request and creates the business objects. In this
example, the Service Manager creates the Business Entity object which in turn
requests a Data Access object.

Finally, the result is returned back to the caller through the Service

Interface.

Pacific AppServer for OpenEdge
(Web/HTTP, REST, SOAP, APSV)

Common Infrastructure

Data Source

Data Access

Manager

Session
Manager

Service
Manager

Context Data
Manager

Authentication

Authorization

Catalog
Manager

Connection
Manager

Logging
Manager

Message
Manager

Property
Manager

Translation
Manager

A nalytics Manager

Request
Message

Business Components

Service Interfaces

Business
Entity

For each
entity...

Startup

Pacific AppServer for OpenEdge
(Web/HTTP, REST, SOAP, APSV)

Common Infrastructure

Data Source

Data Access

Startup
Manager

Session
Manager

Service
Manager

Context Data
Manager

Authentication

Authorization

Catalog
Manager

Connection
Manager

Logging
Manager

Message
Manager

Property
Manager

Translation
Manager

A nalytics Manager

Request
Message

Business Components

Service Interfaces

Request
Message

Common Component Specification – Architecture V1 Page 19
17/02/2016 11:48:00

5 Document History

Date Version Author Change Details

20-November-

2015

1.0_CR Shelley Chase

Rom Elwell

Robin Smith

Final draft for the Steering

Committee.

24-January-2016 1.0_Final Shelley Chase Responded to feedback

from the Ccs community.

 Rename
Configuration
Manager

 Clarify purpose of
Client Context object

 Use consistent casing
in naming

27-January-2016 1.0 Shelley Chase Team feedback.

 Added IManager and
IService interfaces.

 Fixed more casing.

